
Limit points of the iterative scaling procedure

Erik Aas

Abstract

The iterative scaling procedure (ISP) is an algorithm which computes
a sequence of matrices, starting from some given matrix. The objective is
to find a matrix ’proportional’ to the given matrix, having given row and
column sums. In many cases, for example if the initial matrix is strictly
positive, the sequence is convergent. It is known that the sequence has at
most two limit points. When these are distinct, convergence to these two
points can be slow. We give an efficient algorithm which finds the limit
points, invoking the ISP only on subproblems for which the procedure is
convergent.

1 Introduction

The iterative scaling procedure (ISP) is an algorithm which, given an
m × n entrywise nonnegative matrix A and positive numbers r1, . . . , rm,
c1, . . . , cn attempts to find a matrix diagonally equivalent to A, having
row sums ri and column sums cj . Two matrices A and A′ are diago-

nally equivalent if there are sequences (x
(k)
i), (y

(k)
j), k ≥ 1, 1 ≤ i ≤ m,

1 ≤ j ≤ n, of strictly positive numbers such that aij = limk→∞ x
(k)
i a′ijy

(k)
j

for all i, j. (Of course, in some cases the limit can be omitted.) This is
done by computing a sequence of m× n matrices by alternatingly scaling
rows and columns, starting with A.

Depending on the initial data A, r and c, this sequence might or might
not converge. Csiszár and Tusnády [5] showed, in a much more general
context, that the sequence has at most two limit points. Bregman [2]
characterized completely the case when there is only one limit point. In
this note we will describe the decomposition of the limit points in the
general case.

The ISP has been applied in a variety of contexts, the most interesting
of which perhaps being the ranking of webpages [6]. A discrete version
of the algorithm is used by the Zürich City Council to distribute seats in
parliamentary elections [1].

In Section 2, we define the ISP and state known convergence results.
In Section 3, we give prove a characterization of the limit points, see
Theorem 3. In Section 4, we summarize the results in form of an algorithm
for computing the ISP limit points. In Section 5 we provide an example
illustrating the main result. In the concluding Section 6, we state some
questions related to the results proven here.

1

Acknowledgements
I am very thankful to Fabian Reffel who read an early version of this
note, finding a serious error and providing many helpful suggestions. I
also thank Kai-Friedrike Oelbermann and the Augsburg group headed by
Prof. Friedrich Pukelsheim for telling me about the present problem and
electoral methods in general. Svante Linusson and an anonymous referee
provided many helpful suggestions.

2 Preliminaries

Throughout, A will denote a fixed nonnegative m × n matrix, and r =
(r1, . . . , rm), c = (c1, . . . , cn) fixed positive numbers. We further assume
that there is no row or column in A containing only zeros, and that A is
not the direct sum of two smaller matrices. For emphasis, we call (A, r, c)
positive in this case. We will generally denote matrices by capital letters
and their entries by the corresponding lower case letters; thus entry (i, j)
in the matrix A is denoted aij . By the row adjustment (to r) R(A) of A
we mean the matrix whose (i, j) entry is xiaij , where the row multiplier
xi is defined as xi = ri/

∑
j aij . We define the column adjustment C(A),

and the column multipliers yj (to c1, . . . , cn) similarly. Define the support
of a matrix M to be S(M) := {(i, j) : mij 6= 0}. By definition, S(A) =
S(R(A)) = S(C(A)).

For example, if r = (7, 4), c = (3, 1), and A =

(
2 5
4 0

)
, then

R(A) = A and C(A) =

(
1 1
2 0

)
.

Note that R(A) = A = C(A) in case A has both the desired row and
column sums. The iterative scaling procedure consists of adjusting rows
and columns alternatingly, starting with A. The iterates under the scaling
procedure are defined to be

B(k+1) := R(C(k)),

and
C(k) = C(B(k))

for k ≥ 1 and B(1) = R(A).

We define x
(k)
i as the row multipliers used when computing B(k), and

y
(k)
j as the column multipliers used when computing C(k).

Let us cite two theorems concerning the limits of B(k) and C(k).

Theorem 1. ([5], see also [4], section 5) For positive A, r, c, the sequences
B(k) and C(k) are convergent.

Call these two limits, B and C respectively. We refer to these as the
ISP limits (associated to A, r, c). Clearly S(B) = S(C) ⊆ S(A), C(B) =
C, and R(C) = B.

Theorem 2. ([2]) We have B = C if and only if there is some matrix
M with row sums r, column sums c and support a subset that of A; i.e.
S(M) ⊆ S(A).

2

The necessity part of Theorem 2 is easy to see. We will be concerned
with the case when no such matrix M exists, i.e. when B 6= C.

We will use the following observation in what follows. If we scale the
desired row sums by a common factor t, then this gives new ISP sequence
B′(k), C′(k) closely related to the original sequence; we have B′(k) = tB(k)

and C′(k) = C(k) for all k ≥ 1. This is easily proved by induction on k.
Therefore we will not suppose that

∑
i ri =

∑
j cj . We can always

reduce to the sums being equal by choosing t above as
∑
j cj/

∑
i ri, but

it will be more natural not to do so.
In fact, if the limits are not equal, but

∑
i ri =

∑
j cj and A is not the

direct sum of two smaller matrices, then the support of the limit points is
not equal to the support of the initial matrix, that is, some entries in the
matrix tend to zero during the ISP. This is a consequence of Theorem 3
below.

For integer n ≥ 0, we use the notation [n] = {1, . . . , n}. Let I ⊆ [m]
be a set of row indices and J ⊆ [n] a set of column indices. We call any
such pair (I, J) a block.

A set S = {(Ik, Jk)}r1 of blocks is called a splitting if the sets Ik par-
tition the set of rows, and the sets Jk partition the set of columns. The
sets of rows and columns will always be those of the input matrix A in
what follows.

An elementary refinement of a splitting consists of replacing a block
(Ik, Jk) with (I ′, J ′) and (I ′′, J ′′) such that I ′, I ′′ partition Ik and J ′, J ′′

partition Jk. If the splitting S′ is obtained by performing a sequence
of elementary refinements on the splitting S then we say that S′ is a
refinement of S.

By the decomposition of a matrixB we will mean the splitting I1, . . . , Ir,
J1, . . . , Jr of the row and column sets of B such that bij 6= 0 implies i ∈ Ik
and j ∈ Jk for some k, minimal with respect to refinement.

The algorithm to be described will find the decomposition of B (which
of course is the same as that of C). The following observation from [7]
shows that this suffices to compute B, running the ISP only on input for
which it converges.

Proposition 1. Let A′ be the matrix obtained from A by setting the
(i, j) entry to 0 if bij = 0. Then the ISP limits of (A, r, c) and (A′, r, c)
coincide.

Let xi and yj be such that xibij = cij and cijyj = bij . Hence xibijyj =
bij and thus xiyj = 1 whenever (i, j) ∈ S(B). For subsets I of rows, define
r(I) :=

∑
i∈I ri and c(J) similarly for subsets J of columns. Denote by

D′ the decomposition of B. It follows that for each block (I, J) ∈ D′,
xi takes the same value for each i ∈ I and similarly for yj , j ∈ J . This
common value is easily seen to be xi = 1/yj = r(I)/c(J). The number

r(I)/c(J) will be called the quotient of the block (I, J). Therefore, x
(k)
i →

r(Ip)/c(Jp) and y
(k)
j → c(Jp)/r(Ip) as k →∞ for (i, j) ∈ Ip × Jp.

Thus, we conclude that, after reordering rows and columns suitably,
the matrix B will look as follows.

3

J1 J2 . . . Jr

I1 B[I1, J1] 0̄ . . . 0̄
I2 0 B[I2, J2] . . . 0̄
...

...
...

. . .
...

Ir 0 0 . . . B[Ir, Jr]

We further assume the blocks are ordered so that r(I1)/c(J1) ≥ r(I2)/c(J2) ≥

. . . . Ties will be broken according to Lemma 6. A consequence of The-
orem 3 will be that the barred zeros will in fact correspond to zeros in
A.

Note that for each k, the submatrix B[Ik, Jk] is a matrix with row sums
ri and column sums (r(Ik)/c(Jk))cj . Similarly, C[Ik, Jk] has column sums
cj and row sums (c(Jk)/r(Ik))ri. Whenever k 6= l, we have B[Ik, Jl] =
C[Ik, Jl] = 0.

We will say a block (I, J) is feasible if there is some I × J matrix
M with row sums ri, column sums (r(I)/c(J))cj and S(M) ⊆ S(A). A
splitting is feasible if all its blocks are feasible. So the decomposition of
B is clearly feasible.

3 Proofs

Lemma 1. Let p1, . . . , pn, q1, . . . , qn be positive real numbers. Then

min
i

pi
qi
≤ p1 + · · ·+ pn
q1 + · · ·+ qn

≤ max
i

pi
qi
.

If any of the two inequalities is in fact an equality, then all the pi/qi are
equal.

Proof. This follows by induction, the case n = 2 being easy.

A more intuitive way to think about the fraction in the middle is as
the average of the pi’s over the average of the qi’s. It is important to note
that mini pi/maxj qj ≤ (p1 + · · · + pn)/(q1 + · · · + qn) is a considerably
weaker statement than Lemma 1.

We define the (bipartite) graph of A as follows. The vertices are the
rows and columns of A, and row i and column j are adjacent in the graph
if and only if aij 6= 0. If I is a set of rows, we denote by N(I) the set of
neighbours of I, i.e. the set {j : aij 6= 0 for some i ∈ I}.

We will use the following simple generalization of a well-known theo-
rem by Philip Hall (see eg. [3]). We formulate the lemma in terms of a
submatrix of A for later convenience.

Lemma 2. Let (I ′, J ′) be a fixed block in A, and let t = r(I ′)/c(J ′).
Then there is a I ′ × J ′ matrix M with S(M) ⊆ S(A) and row sums ri,
i ∈ I ′, and column sums tcj , j ∈ J ′ if and only if there is no subset I ′′ ⊆ I ′
of rows such that r(I ′′) > tc(N(I ′′) ∩ J ′).

For initial data A, r, c, we define ϕ(A, r, c) as the subset I of rows
such that #I is maximal among those I maximizing r(I)/c(N(I)). Let
us prove that ϕ(A, r, c) is well defined.

4

Lemma 3. If I1 and I2 satisfy the definition of ϕ(A, r, c), then I1 = I2.

Proof. Suppose I1 6= I2. We have r(I1)+r(I2) = r(I1∪I2)+r(I1∩I2) and
c(N(I1)) + c(N(I2)) = c(N(I1) ∪ N(I2)) + c(N(I1) ∩ N(I2)) ≥ c(N(I1 ∪
I2)) + c(N(I1 ∩ I2)).

Therefore

r(I1) + r(I2)

c(N(I1)) + c(N(I2))
≤ r(I1 ∪ I2) + r(I1 ∩ I2)

c(N(I1 ∪ I2)) + c(N(I1 ∩ I2))
.

By Lemma 1 either I1 ∪ I2 or I1 ∩ I2 shows that neither I1 nor I2 can
satisfy the definition of ϕ(A, r, c).

Though it will follow from Theorem 3, it is interesting to note that we
can prove directly that (I,N(I)) is feasible, where I = ϕ(A, r, c).

Lemma 4. Let I = ϕ(A, r, c). Then the block (I,N(I)) is feasible.

Proof. Suppose (I,N(I)) is not feasible. By Lemma 2 there is then some
I ′ ⊆ I such that r(I ′) > (r(I)/c(N(I)))c(N(I ′)), or r(I ′)/c(N(I ′)) >
r(I)/c(N(I)). But this contradicts the choice of I.

Consider the decomposition D′ of B and denote by Ψ(B) the block
obtained by merging all blocks with maximal quotient into a single block
(which will have this same quotient). We will denote by D the splitting
obtained from D′ after this merge. Of course, the blocks in D are all
feasible (since this is true for D′).
Theorem 3. Suppose A, r, c is positive, and let I = ϕ(A, r, c). Then
Ψ(B) = (I,N(I)).

Proof. Let (I1, J1) = Ψ(B). We wish to prove that I1 = I and J1 = N(I).
We do this in two steps.

We clearly have J1 ⊆ N(I1): otherwise B[I1, J1] would have a zero
column. For the same reason we have J ′ ⊆ N(I ′) for each (I ′, J ′) ∈ D.

We now prove that N(I1) ⊆ J1. Suppose this is not the case. Then
there are p ∈ I1, q /∈ J1 such that apq 6= 0. Denote by (I2, J2) the block
in D such that q ∈ J2.

We know that xp(k) → r(I1)/c(J1) and yq(k) → c(J2)/r(I2) as k →
∞. Therefore

xp(k)yq(k)→ r(I1)

c(J1)

c(J2)

r(I2)
> 1.

Choose η > 0 and K such that xp(k)yq(k) > 1 + η for all k ≥ K. Hence
bpq(K + n) > (1 + η)nbpq(K) → ∞ as n → ∞. This contradicts the fact
that all entries in the B(k) are bounded by max(r1+ · · ·+rm, c1+ · · ·+cn).

Thus J1 = N(I1).
It follows from the previous step and the definition of I that r(I)/c(N(I)) ≥

r(I1)/c(J1).
Let (I ′, J ′) ∈ D. We show that r(I∩I ′)/c(N(I∩I ′)∩J ′) ≤ r(I ′)/c(J ′).

Suppose not; then N(I ∩ I ′) ∩ J ′ 6= J ′, since otherwise r(I ∩ I ′)/c(N(I ∩
I ′) ∩ J ′) = r(I ∩ I ′)/c(J ′) ≤ r(I ′)/c(J ′). Let I ′′ = I ∩ I ′. We have
r(I ′′) > (r(I ′)/c(J ′))c(N(I ′′)∩J ′), and thus by Lemma 2 the block (I ′, J ′)
is not feasible, a contradiction.

5

Note that r(I) =
∑
r(I ∩ I ′) and c(N(I)) =

∑
c(N(I) ∩ J ′) ≥∑

c(N(I ∩ I ′) ∩ J ′), where the sums range over the blocks (I ′, J ′) of
D such that I ∩ I ′ 6= ∅.

We can therefore write

r(I)

c(N(I))
=

∑
r(I ∩ I ′)∑

c(N(I) ∩ J ′) ≤
∑
r(I ∩ I ′)∑

c(N(I ∩ I ′) ∩ J ′) . (1)

We know from above and the definition of I that

r(I ∩ I ′)
c(N(I ∩ I ′) ∩ J ′) ≤

r(I ′)

c(J ′)
≤ r(I1)

c(J1)
=

r(I1)

c(N(I1))
≤ r(I)

c(N(I))

for each (I ′, J ′) ∈ D with I ∩ I ′ 6= ∅, so by Lemma 1 all terms in each sum
in the right hand side of (1) must be equal.

We now show that in fact there is only one term in (1), equal to
r(I ∩ I1)/c(N(I ∩ I1)). Suppose to the contrary that we have (I ′, J ′) ∈ D,
I ′∩I 6= ∅, (I ′, J ′) 6= (I1, J1), and r(I∩I ′)/c(N(I∩I ′)∩J ′) = r(I)/c(N(I)).

Then we have r(I∩I ′)/c(N(I∩I ′)∩J ′) = r(I)/c(N(I)) ≥ r(I1)/c(J1) >
r(I ′)/c(J ′), and this contradicts (I ′, J ′) being feasible in the same manner
as was done above. Thus the only term occurring is r(I∩I1)/c(N(I∩I1)∩
J1), and it equals r(I)/c(N(I)). Therefore I ⊆ I1 and by the definition
of I we thus conclude that I = I1.

Using Theorem 3, it is easy to find Ψ(B), as we detail in Section 4.
The following lemma is a consequence of Theorem 2 in [8].

Lemma 5. If the only I satisfying r(I) ≥ c(N(I)) are I = ∅ and [m],
then S(A) = S(B).

The next lemma is needed for distinguishing blocks with the same
multiplier (for example, the blocks in Ψ(B)). The proof is similar to that
of Theorem 3, except we consider cumulative multipliers (to be defined)
instead of incremental ones.

Lemma 6. Suppose (A, r, c) is positive, and let (Ik, Jk) be the blocks
of the decomposition of B. Then the (Ik, Jk) can be ordered so that
N(Ik) ⊆ J1 ∪ · · · ∪ Jk for each k.

Proof. Note that a pair (i, j) is in the support of A but not of B if and

only if the product of cumulative multipliers X
(k)
i Y

(k)
j → 0 as k → ∞.

The cumulative multipliers are defined by X
(k)
i =

∏k
l=1 x

(l)
i and Y

(k)
j =∏k

l=1 y
(l)
j (so that a

(k)
ij = X

(k)
i aijY

(k)
j) for all k.

For blocks (Ia, Ja) and (Ib, Jb) we define (Ia, Ja) ≤ (Ib, Jb) if S(A) ∩
(Ib × Ja) 6= ∅. To prove the lemma it suffices to show that there is no
cycle in ≤. To this end, suppose there is a cycle in ≤.

Then one can find a sequence of points (i1, j1), (i2, j2), . . . , (ir, jr) with
the following properties

• r is even.

• For l even, il = il+1 and jl = jl−1, taking indices modulo r.

• If (il, jl) does not belong to a block of B, then both its (cyclic)
successor and predecessor do.

6

• (ir, jr) ∈ S(A)\S(B)

• If l is odd, then (il, jl) ∈ S(B).

By assumption, for each k,
∏
l oddX

(k)
il
Y

(k)
jl

=
∏
l evenX

(k)
il
Y

(k)
jl

. The
limit of the left hand side is a product of bij/aij for (i, j) ∈ S(B), hence
strictly positive. But the limit of the right hand side is 0, since it contains
at least one term X

(k)
il
Y

(k)
jl

with (il, jl) ∈ S(A)\S(B), while all terms are
clearly bounded. This contradiction finishes the proof.

4 The algorithm

We now describe how to find the decomposition of B given A, r, c. This
is done by repeatedly splitting blocks until this can be done no more,
starting with the single block ([m], [n]). For ease of notation we assume
the current block under consideration is ([m], [n]).

The splitting is naturally divided into two steps, I and II. In step I we
look for a subblock of the current block with greatest quotient among all
such subblocks. In step II we look for (proper) subblocks of the current
block with same quotient as the current block. As observed earlier, we
may assume the current block has quotient equal to 1.

Step I
First compute I = ϕ(A, r, c). This can be done in polynomial time in

the size of A and the number of bits used to represent the input data, as
follows. Let t be any positive number and consider the problem of finding
a matrix with support contained in S(A), row sums ri and column sums
≤ t · cj . For each fixed t this is a standard problem that can be solved
with linear programming in polynomial time. Now, to compute ϕ(A, r, c),
we want to find the largest t such that this problem has a solution with
column sums equal to tcj . If this property is satisfied for some t, it is of
course also satisified for any smaller t. So one can perform binary search
in t to find the rightmost point in the interval of t’s such that the problem
has such a solution. When we have found such a maximal t (which we
can guarantee to be maximal by making sure it is in a sufficiently small
interval), it is easy (for example, by successively forcing the values of
variables in the linear program) to find ϕ(A, r, c) since it is the unique
inclusion-wise maximal one among all solutions.

Now, if r(I)/c(N(I)) > 1, then split the current block into (I,N(I))
and ([m]− I, [n]−N(I)). Otherwise, the current block is left unchanged.

When step I cannot be applied any further (to any block), we perform
Step II
As before, compute I = ϕ(A, r, c), forcing the solution to be different

from I = [m] if possible (as is easily done by modifying the previous
linear program slightly). If this leads to a proper subset I ⊆ [m] with
r(I)/c(N(I)) = 1, then split the current block into (I,N(I)) and ([m] −
I, [n] − N(I)). Otherwise no such subset exists and the ISP limit of the
current block will have the same support as A does in the current block,
by Lemma 5.

Theorem 3 shows that after Step I, all blocks of B contained in some
particular block of the ones found all have the same quotient. Lemma 6

7

show that when step II can not be applied further we will have found the
decomposition of B.

Now, referring to Proposition 1, if we change A by setting the entries in
S(A)\S(B) to 0, the ISP limit points will not change. However, numerical
experiments suggest that convergence is much quicker than without the
change. As a small example of this, take the matrix from the example
below, set the entries outside the splitting found ((1, 3), (1, 4), (2, 1), (2, 3),
and (2, 4)) to zero. Then it takes about 2 iterations to get as close to
(B,C) in the example, as B(5) and C(5) from earlier are from B and C.

5 An example

Let

A =

1 0 0 0
1 1 0 0
1 1 7 2
1 1 9 6

, r = (4, 1, 1, 1), and c = (1, 2, 2, 2).

After 10 iterations we get the following matrices (rounded to 3 digits):

B(5) =

4.000 0.000 0.000 0.000
ε1 1.000 0.000 0.000
ε2 0.074 0.562 0.364
ε3 0.039 0.382 0.578

 and

C(5) =

1.000 0.000 0.000 0.000
ε4 1.797 0.000 0.000
ε5 0.133 1.190 0.773
ε6 0.070 0.810 1.227

 .

Here, ε1 and ε4 are approximately 10−4, and ε2, ε3, ε5, ε6 are approx-
imately 10−6.

The actual limit matrices are (rounded to 3 digits)

B =

4.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 0.604 0.396
0.000 0.000 0.396 0.604

 and C =

1.000 0.000 0.000 0.000
0.000 2.000 0.000 0.000
0.000 0.000 1.209 0.791
0.000 0.000 0.791 1.209

 .

We have Ψ(B) = (I1, J1) where I1 = {1}, J1 = {1}. One can check
that we have ϕ(A, r, c) = I1 and J1 = N(I1) in this case, as expected.

In step I of the algorithm, we find the splitting consisting of the blocks
(I1, J1) and (I2, J2) where I2 = {2, 3, 4} and J2 = {2, 3, 4}.

In step II applied to the block (I2, J2) we find the subset I3 = {2} ⊆ I2
with the property r(I3) = 1 = (3/6)6 = (r(I2)/c(J2))c(N(I2) ∩ J2).
So the result of applying step II to (I2, J2) is (I3, J3) and (I4, J4) :=
(I2\I3, J2\J3). Applying step II to any of the blocks (I2, J2), (I3, J3) or
(I4, J4) yields nothing new, so the final splitting found is {(I2, J2), (I3, J3), (I4, J4)},
which coincides with the decomposition of B.

6 Future work

I would like to mention some related extensions and problems. First,
most results above seem to carry over to the much more general setting

8

of Theorem 5.2 in [4], but I have not explored this further.
A formalisation of the claim that convergence is quicker in the case

B = C would of course be very interesting.
There is a natural version of the ISP with continuous time, as follows.

Let ϑ ∈ (0, 1), and define Rϑ(A)ij = xϑi Aij , and Cϑ(A)ij = Aijy
ϑ
j , with xi

and yj defined as before. Now we can define Fα,β = RαCβ , and ask about

the properties of limε→0 limn→∞ F
(n)
αε,βε(A). The matrix Fα,β(A) will be

diagonally equivalent to A and from this it follows (cf. [7]) that the limit

limε→0 limn→∞ F
(n)
αε,βε(A) will be the same as the ordinary ISP limit of A

if the latter exists. It is not clear what happens in the general case when
that limit does not exist.

Finally, the ISP can of course be defined for arbitrary, not necessarily
nonnegative, A, r, c. Two issues arise in this case. One problem is that
we may obtain matrices having marginals equal to 0 during the iteration.
This could probably be avoided by using the continuous version described
above; it seems reasonable such a system would repel from matrices having
some marginal close to 0. For the discrete time version, the analogous
convergence claims are not true; the initial data

A =

(
1 2
3 4

)
, r = (13,−12), c = (4, 6)

gives a sequence with period 4. This cycle appears to be unstable in
the input.

References

[1] Michel Balinski and Friedrich Pukelsheim (2006). Matrices and poli-
tics, Festschrift for Tarmo Pukkila on his 60th Birthday (Eds. E. Liski,
J. Isotalo, S. Puntanen, G.P.H. Styan), 233-242.

[2] L. Bregman (1967). Proof of the convergence of Sheleikhovskii’s
method for a problem with transportation constraints. USSR Com-
putational Mathematics and Mathematical Physics, 7:191-204.

[3] Richard Brualdi, Seymour Parter, Hans Schneider (1966). The diago-
nal equivalence of a nonnegative matrix to a stochastic matrix. Journal
of Mathematical Analysis and Applications, 16, 31 - 50.

[4] Imre Csiszár and Paul Shields (2004). Information theory and statis-
tics, now Publishers, Delft, section 5.2.

[5] Imre Csiszár and Gábor Tusnády, (1984). Information geometry and
alternating minimization procedures. Statistics and Decisions, Supple-
ment Issue, 1:205-237.

[6] Philip Knight (2008). The Sinkhorn-Knopp algorithm: convergence
and applications, SIAM Journal on Matrix Analysis and Applications,
30:261-275.

[7] Oliver Pretzel (1980). Convergence of the iterative scaling procedure,
Journal of the London Mathematical Society, 21, 379-384.

[8] Friedrich Pukelsheim (2012). An L1-Analysis of the Itera-
tive Proportional Fitting Procedure, preprint. Retrieved at
opus.bibliothek.uni-augsburg.de.

9

