
We will define a function f(n) depending on an positive integer variable n.
Let x be a temporary variable, initally set to n. We’ll change x in n steps, the
final value being f(n). In the ith step we update x to the smallest multiple of
n− i strictly larger than x.

Proposition 0.1. limn→∞ f(n)/n2 = 1
π

Let’s think about how the compiutation of f(n) for a large n begins.
The variable x starts out as n. Then we update it to 2(n − 1). Next we

update it to 3(n − 2), unless 3(n − 2) ≤ 2(n − 1), which is the same thing as
n ≤ 2. Next, if n > 6 we update x to 4(n− 3). If n = 6 we would have updated
to 5(n− 3) in this step instead.

Now we generalize these observations. We know that after k steps, x is a
multiple of (n− k). Define mk by letting mk(n− k) be this multiple.

So, when we make the k:th step, we update x from mk−1(n − (k − 1)) to
mk(n− k). The final value of x will be mn−1(n− (n− 1)) = mn−1. So our task
is to estimate mn−1.

It should be obvious that the pattern above persists; mk will be a sequence
starting of as 1, 2, 3, 4, . . . increasing in steps of one, then at some point it starts
increasing in steps of two, and so on until we reach the final value mn−1.

It is now natural to investigate in exactly which step the increments change
from being 1 to being 2.

We know mk starts out as mk = k + 1. For how long will this be true?
As long as (k + 1)(n − k) < (k + 2)(n − (k + 1)), which can be simplified to
2(k + 1) < n. The largest k satisfying this is clearly n−2

2 , so in roughly the
first 1

2n steps we increment mk by 1, after which we start incrementing it by 2
instead.

We will not be very careful with small errors here, so approximating n−2
2

with 1
2n is fine. Let’s restate what we just found: during the first f1 · n steps,

we increment mk by 1, then start incrementing by 2, where f1 = 1
2 . It seems

reasonable to investigate the sequence fp for which the following statement is
true: when we have already made fp−1 · n steps but not more than fp · n steps,
we increment mk by p. So we have f0 = 0. We should of fp as fractions of
time: after a fraction fp of the total time (total number of steps) n, we start
incrementing mk by p + 1 instead of p.

Let’s write down a formula for the definition of fp above.
Let l = fp−1n. We have ml = (f1 − f0)n + 2(f2 − f1)n + 3(f3 − f2)n + · · ·+

(p − 1)(fp−1 − fp−2), or ml = ((p − 1)fp−1 − fp−2 − fp−3 − · · · − f1 − f0)n.
Now, let fp−1n < k < fpn. Then mk = ml + p(k − l). At step k(+1), we
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change x from mk(n− k) to (mk + p)(n− k). For this to be valid we must have
mk(n − k) < (mk + p)(n − k). This can be simplified to mk < p(n − k) and
using the formula for mk, we get

((p− 1)fp−1 − (fp−2 + · · ·+ f0))n < p(n− 2k + fp−1n)

. Now, when k = fpn, we have roughly equality above. Setting the sides equal
and k to fpn above we get (after some manipulation):

fp =
1
2

+
1
2p

(f0 + · · ·+ fp−1).

We have found (a recursion for) fp!
The first few values are (knowing only f0 = 0): 0, 1

2 , 5
8 , 33

48 , . . . .
We are now in a better position to understand f(n): a good approximation

is n ((f1 − f0) + 2(f2 − f1) + · · ·+ p(fp − fp−1)) for any fixed p. It is easy to
show that the approximation tends to perfect when p tends to ∞ after already
having let n do so.

Again, let k = nfp. After k steps, our temporary variable x is equal to
mk(n−k) = (pfp − (f0 + · · ·+ fp−1) (n−nfp) = n2(1−fp)(pfp−(f0+· · ·+fp−1).

Problem, restated. Define a sequence (fp)∞0 by letting f0 = 0 and
fp = 1

2 (1 + (f0 + · · ·+ fp−1)/p). Show that (1−fp)(pfp−(f0+ · · ·+fp−1)) →
1
π as p →∞.

Consider
(1− fp)(pfp − (f0 + · · ·+ fp−1)).

In the first parenthesis we have something simple. Then we have fp plus
itself p(-1) times, minus a total of p other fi. So the second parenthesis is
translation invariant in a sense: replacing fi by fi + a for any constant a does
not change the value of the second parenthesis. The first will be replaced by
(1 − a − fp), of course. We should choose an a 6= 0 that suits us best. For
this we need to check what happens to the definition of the resulting numbers
gp := fp + a. It will be

gp =
1
2
(1 + a) +

1
2p

(g0 + · · ·+ gp−1).

Letting a = −1 seems like a good idea, so we do that. Then we define
g0 = −1, gp = (g0 + · · · + gp−1)/(2p) and should compute lim−gp(pgp − (g0 +
· · ·+gp−1). The numbers gp are negative so we look at their negatives hp = −gp

instead. Now we have h0 = 1, hp = (h0 + · · · + hp−1)/(2p) and we should find
lim hp(h0 + · · ·+ hp−1 − php) = lim ph2

p.
Consider

hp =
1
2p

(h0 + · · ·+ hp−1).

Here, we have a sequence related with its corresponding sequence of partial
sums, and something similar could be said about the expression whose limit we
should compute. The inverse operation of forming the sequence of partial sums
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is forming the sequence of consecutive differences, so there should be a version
of this formula phrased in terms of the sequence σp := f0 + · · · + fp involving
consecutive differences. It is

σp − σp−1 =
1
p
σp.

But this is just σp = σp−1(1+ 1
2p ). This means that σp is simply the product

p∏
i=1

(1 +
1
2i

).

Let’s investigate what out limit looks like in terms of σp.
It is lim ph2

p = lim(σp − σp−1)2.
We factor out σp−1 from each parenthesis and get

(σp−1)
2 (

σp

σp−1
− 1)2 =

(
p−1∏
i=1

(
1 +

1
2i

))2

1
4p2

=

1
4p2

p∏
i=1

(
2i + 1

2i

)2

.

Wallis’ formula is 1
π =

∏p
i=1

(
4i2

(2i−1)(2i+1)

)
, which is similar to our expres-

sion. Dividing our expression by the right hand side in Wallis’ formula should
give 1, and if we can prove this we are done.

Said quotient is

1
2p + 1

p∏
i=1

(2i + 1)2

(2i + 1)(2i− 1)
=

1
2p + 1

p∏
i=1

2i + 1
2i− 1

= 1,

the last product being telescopic.
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