
m∑
k=0

(
n− 1 + k

k

)
=
(

m + n

n

)
Count the number of (m + n)-paths from (0, 0) to (0, 0) using steps (1, 0)

and (0, 1) on Zm × Zn. Let k be the row of the first return to column 0.STOP

\usepackage{youngtab}
\young(1,5,3)

STOP
X1, . . . , Xn

E(max
i

Xi) =

∫ ∞

0

E(max
i

Xi|
∑

i

Xi = t)
d

dt
P (
∑

i

Xi ≤ t)dt =

∫ ∞

0

tE(max
i

Xi|
∑

i

Xi = 1)
d

dt
P (
∑

i

Xi ≤ t)dt =

E(max
i

Xi|
∑

i

Xi = 1)E(
∑

i

Xi)

If P (Xi ≤ t) = 1 − e−t for all i, then E(maxi Xi) =
∑n

k=1

(
n
k

) (−1)k+1

k and
E(
∑

i Xi) = n

Furthermore the lengths Xi are the lengths of a partition of [0,
∑

i Xi] into
n parts chosen uniformly at random.

Thus E(maxi Xi) = 1
n

∑n
k=1

(
n
k

) (−1)k+1

k for the lengths Xi of a uniformly
random chosen partition of [0, 1] into n parts.

Todo: simplify
∑n

k=1

(
n
k

) (−1)k+1

k using EKHAD
(Nothing above is properly justified.)STOP
Let P (f) be the Newton polytope (or -gon) of the polynomial f .

P (fg) = P (f) + P (g)

(Minkowski sum). For the non-obvious inclusion, argue that the lex-largest
monomial is the product of the two lex-largest monomials of the factors (and
thus a single product and not a sum of products) and that lex-order can be
defined in any direction, not just in an axis-parallell manner. STOP
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The graph of the result of identifying x and −x in the dodecahedron is the
Petersen graph. Of course.

What is the communication complexity of finding the median of A∪B when
Alice knows A and Bob knows B? It is O(log(n)) when A,B ⊆ {1, . . . , n}.

For each n, find n lattice vectors vi = (xi, yi), xi, yi integers, such that the
sums

∑
i∈S vi are all distinct but as compact(undefined) as possible.

Percolation Voronoi (not Voronoi percolation) [after thinking about this: it
seems not much can be said.] STOP

Minimizing the sum of squares of the errors is more natural than minimizing
the sum of the absolute values of the errors if the errors are Gaussian (as phys-
ical errors are). This is because minimizing the sum of squares is a maximum
likelihood estimator. (todo: remove opinion) STOP

The relation (sisj)mij = e makes sense for reflections in arbitrary hyper-
planes, not just linear ones (bjÃ¶rner-brenti notation). STOP

A path in PR2 can be thought of as a continuous movement of a pair of
antipodal points on S2. Restricting attention to one of these points (this is
possible, even though the pair being unordered, since the two points will never
equal each other) gives a path in S2, which either ends in its starting point or
the antipode of the starting point. (And a path in S2 obviously gives a path in
PR2.) This is the use of the concept of ’covering space’.
STOP

Knowledge of λk
1 +· · ·+λk

n for 1 ≤ k ≤ n as an ordered sequence is equivalent
to knowing λ1, . . . , λn as a multiset. If A is the adjacency matrix of a graph G,
the k:th term in the sequence is the number of closed paths of length k in G
(with marked ’starting’ point). STOP

(non-un-)Knot around three points a,b,c such that removing any of a, b or c
gives an un-knot: (aba’b’)c(aba’b’)’c’ = aba’b’cbab’a’c’, where ’ is inverse of an
operation and ’X’ is the operation of going clockwise around point X. (Strictly
these are computations in the fundamental group of the triply punctured plane,
which happens to be a free three-group on generators a,b,c.)

Let σ : [n] → [n]. The number of graphs G on [n] such that xy ∈ E(G) iff
σ(x)σ(y) /∈ E(G) is 2.... Replacing ’graph’ by ’r-coloring of the edges of Kn’
replaces ’2’ by r.

proposition: if Z1, . . . , Zn are exponentially distributed with same
means, then (X1, . . . , Xn), where Xi = Zi

Z1+···+Zn
, is uniformly distributed

(wrt. lebesgue) on {(z1, . . . , zn) : zi ≥ 0 for all i, z1 + · · ·+ zn = 1}. proof.
If W is a random variable, then pW is its density function.

pX(x) =
∫∞
0

pZ(tx)dt =
∫∞
0

e−(x1+···+xn)tdt =
∫∞
0

e−tdt, which does not
depend on x.

The following fact is implicit in many places, for example in the [theorem
involving the word ”abacus”]. However I needed some effort to state and prove
it. fact: If λ is a partition, then if the hook number h occurs in λ, then
all its positive integer divisors occur as hook numbers in λ. The only crucial
observation is the following: the hook number hij counts the number of boxes
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in the unique ’snake’ Sij with one end in row i and the other in column j. This
snake is removable, in the sense that λ\Sij is a partiton diagram.

proposition: Suppose d|h11. Then there are i, j such that hij = d. proof.
Split the snake S11 into h11/d consecutive subsnakes S1, . . . , Sr, each of size
d, where r = h11/d. It is sufficient to show that at least one of the Si are
removable, since then that snake will correspond to a hook, whose size will of
course be d. Mark each end of each snake ’+’ or ’-’ in the following way. The
left-bottom end of a snake is marked ’+’ iff removing the remainder(including
the end itself) of the row containing the end leaves a partition. Similarly the
top-right end is marked ’+’ if removing the remainder of the column containing
that end leaves a partition. So a snake is removable if both ends (which may
coincide (but only in a trivial case)) are marked ’+’. We need to show that
there is such a snake among the Si. Let us think of the snakes as going from
left to right (they are in fact going left - down to right-up) and call the marks
on each snake the left or right mark.

The following two claims easily imply that some snake has a double +.

• If SL, SR (left, right) are two consecutive snakes, then there is a + to the
right in SL iff there is a ’-’ to the left in SR.

• S1 has a ’+’ to the left, and Sr has a ’+’ to the right.

Example:

9 7 5 4 +
8 6 4 − S
6 − S +
S +
+ . Here S denotes the middle part of each size-three snake.

The hooknumber ’behind’ the leftmost S is 3.

Other implicit fact: Write λ →t λ′ if λ′ is a partition and can be obtained
from the partition λ by removing some snake of size t. For any partition λ
and positive integer t, any sequence λ →t λ1 →t · · · →t λ0 of maximal length
ends in the same partition λ0. By induction it is suffices to prove that for any
partition λ together with λ1, λ2 such that λ →t λ1 and λ →t λ2, there is a
partition λ3 such that λ1 →t λ3 and λ2 →t λ3. This is not hard to prove but it
is unexpected that it is possible to prove.

In fact, if at(n) is the number of partitions of size n that can occur as λ0’s
(t-core partitions), then

∞∑
n=0

at(n)xn =
∞∏

n=1

(1− xtn)t

1− xn
.

entropy Suppose X is a random variable such that P [X = i] = 1
n for

i ∈ {1, . . . , n}. Then the entropy, or ’information content’, H(X), is defined to
be
∑

i pi log( 1
pi

).
Why?

3



Of course one can think about H(·) as simply being a nice way to associate
a number to random variables, satisfying useful properties. I will think about
this informally and try to motivate calling H(X) the information content of X.
We will choose the base 2 for the logarithm above and then the unit of H(X)
will be bits.

We need to informally motivate the following, after which the formula will
follow from manipulations.

1. If X, Y are independent, then H(X, Y ) = H(X) + H(Y ). Here
(X, Y ) is the random variable taking values (x, y) where P [x, y] = P [X =
x]P [Y = y].

If an experiment has information content 12.34 bits, then it is reasonable
that 10 experiments have information content 123.4 bits.

2. If X is equal to the variable Y with probability p and to Z with
probability (1− p), then H(X) = pH(Y ) + (1− p)H(Z)

Again thinking of X, Y, Z as ’experiments’, I think the following description
is convincing.

Suppose we perform many X-experiments, in total N . This can be done by
first selecting randomly for each experiment whether it should be a Y or a Z. If
N is large, the number of Y :s is close to pN . So counting the bits in two ways
we have NH(X) = pNH(Y ) + (1− p)NH(Z).

3. The information content of a fair coin is 1 bit.
I’m fine with this statement.
The formula follows.
Let Y be a number in [n] chosen uniformly at random, and (Si) be a partition

of [n] into r subsets. We define X to be the unique x such that Y ∈ Sx.
Let ni = #Si. Since Y is uniform, H(Y ) = log n (at least for power-of-two
n). The random variable Y is described by the independent(not really) pair
of random variables (X, Z) where Z is Zi with probability ni/n, and Zi is
uniform in Si. Hence log n = H(Y ) = H(X) + H(Z) = H(X) +

∑
i

ni

n H(Zi) =
H(X) +

∑
i

ni

n log ni, which gives H(X) =
∑

i
ni

n log( n
ni

).
I’m not totally happy about these motivations. My objective was to under-

stand how something can have a non-integer number of ’bits’ as ’information
content’. It is answered above only as ’it’s the result of taking averages of in-
teger numbers of bits’. Also, not all random variables can be described as X
above.

mass below waist
How does one measure the weight of the part below the waist of a person

without killing it?
attempt 1: Identify the mass distribution of the person with the function

f : R → R+ with compact support. Here f(h)dh is the mass of the crosscut
of height dh at height h above the waist (h may be negative). We are looking
for
∫ 0

−∞ f(h)dh given some statistics S(f) which can be measured without too
much mess.

For a ∈ R let Sa(f) =
∫∞
−∞ hf(h + a)dh. This is the angular momentum

when balancing horizontally on a fixed point at h = a. Unfortunately, this just
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tells us the values A =
∫∞
−∞ hf(h)dh and B =

∫∞
−∞ f(h)dh, and it is easy to

construct two f :s with same values for A and B but different
∫ 0

−∞ f(h)dh.
attempt 2: Measure the force F needed to keep the waist at the water

line in a pool. This just tells us what the difference of the total mass and
the volume below the waist is (multiplying these by fixed physical constants
so that the units are right). Clearly both these numbers are easily determined
(independently of each other) in different ways. At least, we can find the mass
under the waist if we somehow knew the mean density there.

attempt 3: Let p1, . . . , pn be points in space with masses m1, . . . ,mn. The
gravitational field at a point q is F (q) :=

∑
i mi/d(pi, q). For n generic qi, the

vectors vi := (1/d(p1, qi), 1/d(p2, qi), . . . , 1/d(pn, qi)) are linearly independent(i
think) so knowing F (qi) suffices to determine the mi. This shows that the
problem can be solved using only measurements of acceleration, but it is not
very practical (or, more vaguely but more correct: using classical mechanics (no
need for eg. thermodynamics)).

Putting inequalities into context
The Cauchy-Schwarz inequality is

∑
xiyi ≤

(∑
i

x2
i

)1/2(∑
i

y2
i

)1/2

.

By rescaling, it suffices to prove it for unit vectors. For unit vectors it follows
from the AM-GM inequality: xiyi ≤ (x2

i + y2
i )/2 ⇒

∑
xiyi ≤ 1 if

∑
i x2

i +∑
i y2

i = 1.
Now, fix nonnegative integers m,n and consider an array xij (1 ≤ i ≤ m, 1 ≤

j ≤ n) of positive reals together with a sequence p1, . . . , pm of positive reals with
sum 1. By the (m,p)-Hölder inequality we mean the statement that for any
values xij , we have ∑

i

∏
j

xij ≤
∏
j

(∑
i

x
1/pj

ij

)pj

.

Thus, the (2, 1/2, 1/2)-Hölder inequality is the Cauchy-Schwarz inequality,
and the (2, 1/p, 1/q)-Hölder inequality is the classical Hölder inequality.

Note that by applying Cauchy-Schwarz over and over again to
∑

i

∏
j xij ,

we obtain (m,p)-Hölder inequalities for all m,p such that the pi are powers of
two (with negative integer exponents).

Now, choose k and let p =
∑

j≤k pj , q =
∑

j>k pj , xij = u
pj/p
i for j ≤ k

and xij = v
pj/q
i for j > k. Simplify. This shows that (m,p)-Hölder implies

(2, p, q)-Hölder.
The previous two steps and the RHS being continuous in p imply (2, p, q)-

Hölder for all p, q ≥ 0 such that p + q = 1. Finally (2, p, q)-Hölder implies
(2,p)-Hölder for all p by induction.
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