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Problems

Erdos-Szekeres Theorem: Any permutation σ of [r2+1] = {1, 2, . . . , r2, r2+
1} contains a monotone subsequence of length r + 1.
This theorem can be proved by induction in a not-so-illuminating way.

Proof. (sketchy) Given σ, suppose the theorem is false and all monotone subse-
quences have length ≤ r (by induction some monotone subsequence has length
exactly r), and remove all the elements that are beginnings of longest monotone
subsequences. There can be at most r beginnings of longest increasing sequences
and likewise for beginnings of longest decreasing sequences, since a collection
of beginnings of longest increasing sequences themselves form a decreasing sub-
sequence, which by assumption has length ≤ r. It is easy to see that at most
r+r−1 elements (if the number of beginnings of increasing subsequences and of
decreasing subsequences are both r, then the one of these must be the beginning
of both an increasing and a decreasing subsequence) are removed by doing this.
Now there are at least r2 + 1 − (2r − 1) = (r − 1)2 + 1 elements left and by
induction there is a monotonic subsequence of length r among those, which is
a contradiction.

Knowledge of the RSKc trivializes the theorem above, as we shall see. Not
surprisingly, the proof we get by using the correspondence is also more concep-
tual. In particular, we will be able to understand where the squaring in ’r2 + 1’
comes into play rather than just making the induction work. (Of course, we
could get rid of the ’+1’:s in the statement of the theorem by saying ”the short-
est (varying σ) possible longest monotone subsequence of the r2-permutation σ
has length r” instead.)

Problems: Find the longest common subsequence of two permu-
tations π, σ of [n], or, equivalently, find the longest increasing subse-
quence of σ−1π.

The longest common subsequence problem has seen applications to genomics
and department dinners. The special case considered here, that of permutations
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or of strings of equal length that use all characters from a given alphabet ex-
actly once, does not easily extend to the general problem of finding the longest
common subsequence of two strings. However, the RSKc will give us an efficient
algorithm for solving this problem in this special, running in time O(n log n).
This is substantially better than the best known algorithm for the general case.
Strings having repeated characters and not having the same length (or same
multiset of characters used) in contrast to permutations, present different prob-
lems when trying to extend from permutations to the general setting.

The Cauchy Identity. The following holds,∑
λ

sλ(x)sλ(y) =
∏

i,j≥1

1
1− xiyj

.

Here, sλ is the Schur function. It will be defined below when the weight of a
tableau is defined.

This was proved in a lecture earlier in the course in a way different from the
proof to be given here. Also, there the Schur function was defined differently.
I will not prove the definitions are equivalent. The Cauchy identity is included
here because the RSKc being weight-preserving (as will be explained), seems
to be the most natural combinatorial proof of this identity. In turn, the RSKc
being weight-preserving is immediate from the definition to be given below.

Definitions

I will mention three correspondences, which form a chain of extensions (as do
their names): the Schensted correspondence (Sc), the Robinson-Schensted cor-
respondence (RSc) and the Robinson-Schensted-Knuth correspondence (RSKc).

The RSc was mentioned in Kurt’s lectures, and it is a correspondence be-
tween permutations and pairs of Young tableaux. The RSKc generalizes ’per-
mutation’ to ’generalised permutation’ and ’pair of standard young tableaux’ to
’pair of semistandard young tableaux’. The Sc is an interesting special case of
the RSc, the algorithm producing only the P tableau as opposed to RSc which
produces both the P and Q tableaux.

[I now define the RSc. Below is the example I will use to do that.]
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Example: Let π = 75823146.

P (π) Q(π)
7 1
5
7

1
2

5 8
7

1 3
2

2 8
5
7

1 3
2
4

2 3
5 8
7

1 3
2 5
4

1 3
2 8
5
7

1 3
2 5
4
6

1 3 4
2 8
5
7

1 3 7
2 5
4
6

1 3 4 6
2 8
5
7

1 3 7 8
2 5
4
6

This process can be inverted, showing that this is indeed a bijection. It
incidentally proves

∑
λ

(
fλ

)2 = n!, where fλ is the number of Young tableaux
with strictly increasing rows and columns using all elements from [n] exactly
once.

We now make the last generalisation, obtaining the RSKc. Observe that
a permutation can be identified with its permutation matrix, and that such
matrices are square matrices with nonnegative integer entries. The RSKc is a
bijection from the set of nonegative integer matrices to the set of semistandard
Young tableaux (ssyt) with elements from Z+. A tableau is semi-standard if its
rows and columns are weakly decreasing. The first step is to associate to each
such matrix a generalised permutation in the following manner:

[example used:]  0 2 1
1 3 0
2 1 0


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will correspond to (
1 1 1 2 2 2 2 3 3 3
2 2 3 1 2 2 2 1 1 2

)
We always assume the top row in a generalized permutation is sorted, and

that ties are broken by increasing values in the lower row. The RSKc is simply
the natural extension of the RSc for these kinds of arrays (a permuation can
also be thought of as a two-line array whose top row form a range of distinct
integers starting with 1). We never bump out another element with an element
of equal value; we instead find the smallest strictly larger to bump out. We
insert the values in the top row into Q and the values in the bottom row into
P , inserting a pair in the same column at the same time, starting from the left.
However, we will only use the generalized permutations as the things ’on the
left side’ of the correspondence, not integer matrices.

Definition: The weight of a generalized permutation is the mono-
mial

∏
j xuj ylj , where ui are the elements of the upper row and li

are the elements of the lower row. (So the variables are x1, x2, . . .,
y1, y2, . . ., and the weight is a monomial in x and y.) The weight of
a semi-standard Young tableau is

∏
cell c of the tableau xvalue in c. It is a

monomial in the variables x1, x2, . . ..
We now define the Schur function sλ(x) = sλ(x1, x2, . . .) by

sλ(x) =
∑

U is a standard Young tableau with shape λ

weight(U)(x).

It is immediate from the definition that the weight of the generalised per-
mutation π in x,y is equal to the weight of P (π) in x times the weight of Q(π)
in y, since the same values occur with the same multiplicities in the tableaux
and the gpermutation.

Properties

Here are some interesting properties of the RSc.
Theorem: Suppose π RS corresponds to (P,Q). Then

• π−1 RS corresponds to (Q,P ).

• πr, the reversal of π (the reversal of 41235 is 53214), RS corre-
sponds to (P t, ?), the transpose of P and tableau we will saying
nothing about.

• The length of a longest increasing subsequence of π is equal to
the number of elements in the top row of P (π).

A theorem of Curtis Greene proves a more general form of the last statement:
Theorem (Greene) Let π be a permutation and λ the partition

given by P (π). Then, for each k, λ1 + . . . + λk is equal to the greatest
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length of any subsequence of π that can be written as the union of k
increasing subsequences of π.

This is a suitable generalisation for proving the third point above by induc-
tion. We will not do a full proof of any of these statements, but indicate the
connection between the definition given here and the ’geometric’ definition (due
to Viennot) given by Kurt in the lectures. From the geometric definition the
three properties will be clear.

Observe that the theorem of Greene does not mention Q(π) at all. In
fact, P (π) in a sense encodes the essential information about increasing sub-
sequences of π, while Q(π) tells us exactly which of the permutations with
similar ’increasing-subsequences properties’ the pair (P,Q) corresponds to (or
equivalently, what properties π−1 has). If we identify all permutations having
the same P tableau, we obtain what is called the plactic monoid (monoid re-
ferring to the operation of concatentation; usually the plactic monoid is defined
for general words over some alphabet, not just for permutations of [n]). An
interesting result on the plactic monoid is that equivalence in this monoid is
the same as Knuth equivalence, defined as considering any two permutations
connected by moves of the form xzy ↔ zxy or yxz ↔ yzx, where x < y < z,
to be the same. These moves can be seen to preserve the length of the longest
increasing subsequence (but not the sequences themselves, of course). Here xyz
is understood as three letters standing next to each other in the permutation (so
’2143576’ ↔ ’2143756’ is a valid move). This definition is the basis of ’plactic
sorting’, another way of finding a longest common subsequence of two strings.
It also holds that each class in the plactic monoid contains exactly one involu-
tion (a permutation all whose cycles have length at most 2). This is one way
of proving the identity

∑
λ`n fλ = #( involutions on [n]). (Observe that an

involution on n is automatically a permutation and that the right hand side can
be simplified slightly.)

Recall the construction of the shadow diagram of an n-permutation from the
lectures, and that the (x-)coordinates of the vertical lines of this diagram define
the first row of Q(π), while the (y-)coordinates of the horizontal define the first
row of P (π).

The northeast corners of the lines of the shadow diagram defines a new set
of dots in [n]2, whose shadow diagram similarly induces the second rows of P (π)
and Q(π), and so on.

The way to see the connection with the definition given here (usually de-
scribed as the bumping procedure) is as follows:

[The following might be easier to read during the actual seminar than stan-
dalone.]

Think of the bumping construction of (P (π), Q(π)) as a process proceeding
in steps (insertion of π1, π2, . . . , πn). These steps correspond to the growth of the
shadow diagram from the left to the right. Suppose πk is about to be inserted
into (P (π), Q(π)) bumping-wise. Consider the part of the shadow diagram
whose x-values are strictly less than k. We will now relate the column x = k in
the shadow diagram to what happens in the first row of (P (π), Q(π)). If πk is
inserted at the end of the last row, this corresponds to a vertical ray emanating
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from (k, πk) in the shadow diagram. If πk bumps some value y out of the first
row, this corresponds to the vertical line going up from (k, πk) intersecting a
line with constant y-value y ’coming from the left’. This intersection will give
a northeast corner for the second shadow diagram, which will in the next stage
(when drawing the shadow diagram of the northeast corners) correspond to the
insertion of y into the second row of P .

Observe also that P (π) is associated only with x-values of the permutation
diagram and Q(π) is associated only with y-values of the permutation diagram.
Thus interchanging x and y -values, that is, taking the inverse of π, reasonably
corresponds to interchanging P and Q.

Similar considerations prove the second point above.
Finally it’s easy to see that the number of shadow lines in the shadow dia-

gram is equal to the length of a longest increasing subsequence, as observed in
Kurt’s lectures.

Solutions to problems

The Erdos-Szekeres theorem follows almost immediately from the properties
above; we know that the length of a longest increasing subsequence is the length
of the first row and (since an increasing subsequence of the reversal of a permu-
tation is a decreasing subsequence of the original permutation, or directly from
the geometric definition) that the length of a longest decreasing subsequence
is the number of elements in the first column of the P tableau. In order for a
permutation to have both these numbers at most r, its corresponding tableaux
must fit into a square of side r, which in particular means it can have at most
r2 elements.

From this, a natural generalisation (with analogous proof) is easily seen to
hold: any permutation whose decreasing subsequences are bounded in length
by a and whose increasing subequences are bounded in length by b can have
at most ab elements. Any permutation on ab + 1 violates at least one of those
conditions. In fact the RSKc allows us to give a structured description of all
permutations extremal with respect to these properties; they are the ones with
rectangular tableaux.

Using the bumping procedure to calculate the top row of the P tableau of a
permutation clearly does not need knowing the other rows of the tableau. Thus
we can simply keep track of the top row as we construct the P tableau of σ−1π
in order to find the length of the longest common subsequence of π and σ. Since
the top row is sorted, we can perform binary search in it leading to a O(n log n)
time O(n) space algorithm.

The proof of the Cauchy identity is a computation∏
i,j≥1

1
1− xiyj

=
∏

i,j≥1

∑
k≥0

xk
i xk

j =

∑
π is a generalised permutation with entries from Z+

weight(π)(x,y) =
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∑
T and U are ssyt with same shape

weight(T )(x)weight(U)(y) =

∑
λ

 ∑
U has shape λ

weight(U)(x)

  ∑
T has shape λ

weight(T )(y)

 =

∑
λ

sλ(x)sλ(y).

Here we use the fact that the RSKc is a weight-preserving bijection in the middle
equality.
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