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Abstract

The bunkbed conjecture is an intuitively plausible, unproven conjecture con-
cerning open paths in a random graph. We study this conjecture and problems
naturally connected to it. In particular, an interesting connection between ran-
dom graphs and random orientations of graphs is investigated.
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Summary

All topics discussed will in some way be related to the bunkbed conjecture. In
most cases this discussion is reduced to investigating how the events {x → y}
and {y → z} and their probabilities are correlated, where {x → y} loosely means
’there is a path from x to y’, the specific definition varying slightly between the
models considered.

• In Chapter 1 we compute the covariance between {x → y} and {y → z}
in a random orientation of a complete bipartite graph, where {x → y}
denotes the event that there is a directed path from x to y consistent with
the orientation.

• Chapter 2 deals with the same covariance as above, now conditional on
{z → y}, in a randomly oriented random graph.

• The results in chapter 3 are concerned with an interesting similarity be-
tween percolation in undirected graphs and percolation in directed graphs

• Chapter 4, describing the bunkbed conjecture, is the main part of this
thesis.

• Finally in Chapter 5, some topics related to the bunkbed conjecture are
discussed.

Aas, 2010. 1
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Chapter 1

Directed paths in random
orientations of Km,n

Let x, y and z be three distinct vertices in the complete bipartite graph Km,n

with partition (X,Y ), where |X| = m, |Y | = n. By giving Km,n a uniformly
chosen random orientation - that is, declaring each edge to be directed in either
of the two possible ways with probability 1/2, independently of all other edges
- we obtain a probability space with measure P = Pm,n. For any two vertices
x, y of Km,n, say that x reaches y, denoted by x → y, if there is a directed path
from x to y consistent with the chosen orientation. The goal of this chapter is
to determine the asymptotic (as m and n → ∞ in a certain fashion; see below)
covariance between the events x → y and y → z. That is, we are interested in
the behaviour of

P (x → y → z) − P (x → y)P (y → z)

as n tends to infinity.
For any two events A, B in any probability space, P (A)P (B)−P (A∩B) =

P (Ac)P (Bc) − P (Ac ∩ Bc). Hence one may consider

P (x 6→ y 6→ z) − P (x 6→ y)P (y 6→ z)

instead, which turns out to be easier.
To achieve this we need to bound the probability of various events related

to the problem, explained below.
Clearly the covariance will depend on how x, y and z are situated in the

graph.
From symmetry considerations, all possibilities are covered by the following

three cases:

• x, y, z ∈ X,

• x, y ∈ X, z ∈ Y , and

• x, z ∈ X, y ∈ Y .

If S and T are two disjoint sets of vertices in Km,n, an ’ST -witness’ is defined
to be a vertex u for which there is at least one edge from S to u and at least
one edge from u to T .

Aas, 2010. 3



4 Chapter 1. Directed paths in random orientations of Km,n

For a vertex a in Km,n, the set Oa will loosely be defined as the set of vertices
in X ′ ∪ Y ′ (thus in X ′ if a ∈ Y and in Y ′ if a ∈ X) which can be reached in
exactly one step from a, X ′ and Y ′ being defined separately in each section
where this notation is used. We denote |X ′| and |Y ′| by m′ and n′. The set Ia

of vertices which reach a in exactly one step is similarly defined.

1.1 Preliminary bounds

Knowing the following probabilities (modulo the obvious of symmetries of re-
versing all arrows and interchanging X and Y ) suffice to compute the covariance
between the events {x 6→ z} and {z 6→ y}:

• (i) P (b 6→ a)

• (ii) P (d 6→ a)

• (iii) P (b 6→ d 6→ a)

• (iv) P (c 6→ b 6→ a)

• (v) P (d 6→ b 6→ a)

Here, a, b, c ∈ X and d ∈ Y are four distinct vertices. In giving asymptotic
bounds of these probabilties, we will restrict ourselves to the case m = ⌊βn⌋, for
some constant β > 0. However this turns out to be a rather general case, as the
computed covariance will only depend on whether β < 1, β = 1, or β > 1. Thus,
throughout we assume β to be some given positive constant and m = ⌊βn⌋.

Estimating these probabilities will be a lot of repetitive work. The following
inequality will be used several times: if s, t ≥ α, then st ≥ αs + αt − α2.

Below, when summing over subsets of nodes denoted by upper case letters,
the sizes of these sets will often be denoted by the corresponding lower case
letters.

(i) P (b 6→ a)

Lemma 1.1.

P (b 6→ a) ∼ 2

(

1

2

)n

.

Proof. Let X ′ = X − {a, b}, Y ′ = Y .
A lower bound is given by P (b 6→ a) ≥ P ({there is no edge directed away from b}∪

{there is no edge directed towards a}) = 2
(

1
2

)n
−
(

1
2

)2n
, by inclusion-exclusion.

By calculating the probability that there is no path from b to a of length
at most 4, we get the following upper bound: P (b 6→ a) =

∑

S,T⊆Y P (b 6→

a|Ob = S, Ia = T )P (Ob = S, Ia = T ) ≤
(

1
2

)2n∑

S,T⊆Y :S∩T=∅ P (no x ∈

X ′ is an ST -witness) =
(

1
2

)2n∑n
s=0

∑n−s
t=0

(

n
s

)(

n−s
t

)

(

(

1
2

)s
+
(

1
2

)t
−
(

1
2

)s+t
)m−2

.

Note that the partial sum corresponding to st = 0 is equal to the lower
bound. We now show that the other terms sum to o(

(

1
2

)n
). Split the remaining

sum into the following four parts: S1: s, t ≥ α; S2: 1 ≤ s ≤ α ≤ t; S3:
1 ≤ t ≤ α ≤ s; S4 : 1 ≤ s, t ≤ α.
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Note that in the S1 case,
(

1
2

)s
+
(

1
2

)t
−
(

1
2

)s+t
≤
(

1
2

)α−1
. Hence S1 ≤

(

1
2

)2n∑n
s=α

(

n
s

)
∑n−s

t=α

(

n−s
t

) (

1
2

)(α−1)(m−2)
=
(

1
2

)2n+(α−1)(m−2)
3n = o(

(

1
2

)(α−1)(m−2)
) =

o(
(

1
2

)n
), the last equality holding when choosing α large enough.

S2 ≤
(

1
2

)2n∑α
s=1

(

n
s

)
∑n−s

t=α

(

n−s
t

)

(

(

1
2

)s
+
(

1
2

)t
)m−2

≤
(

1
2

)2n∑α
s=1 nα

∑n
t=0

(

n
t

) ((

1
2

)

+
(

1
2

)α)m−2
≤

(

1
2

)n
αnα

((

1
2

)

+
(

1
2

)α)m−2
= o(

(

1
2

)n
), if α > 0.

By symmetry, we may choose α possbily even larger so that S3 = o(
(

1
2

)2n
)

holds.
Clearly, S4 = o(

(

1
2

)n
).

Hence P (b 6→ a) − 2
(

1
2

)n
≤ S1 + S2 + S3 + S4 = o(

(

1
2

)2n
).

(ii) P (d 6→ a)

Lemma 1.2. P (d 6→ a) ∼
(

1
2

)m
+
(

1
2

)n
. (This is ∼

(

1
2

)m
for β < 1, ∼ 2

(

1
2

)n

for β = 1, and ∼
(

1
2

)n
for β > 1.)

Proof. Let X ′ = X − {a}, Y ′ = Y − {d}. The probability is bounded from
below by P (d 6→ a) ≥ P (no edge leaves d or no edge enters a) ≥

(

1
2

)m
+
(

1
2

)n
−

(

1
2

)m+n−1
.

For the upper bound, we calculate the probability that there is no path from
d to a of length at most 3: P (d 6→ a) =

∑

S⊆Y ′,T⊆X′ P (a 6→ d|Ia = S,Od =

T )P (Ia = S,Od = T ) ≤
(

1
2

)m+n−1∑n−1
s=0

(

n−1
s

)
∑m−1

t=0

(

m−1
t

)

P (no edge from S to T ) =
(

1
2

)m+n−1∑n−1
s=0

(

n−1
s

)
∑m−1

t=0

(

m−1
t

) (

1
2

)st
. The partial sum with st = 0 equals

the lower bound. We now show that the remaining terms sum to o(
(

1
2

)m
+
(

1
2

)n
)

by splitting their sum into the following cases: S1: s, t ≥ α, S2: 1 ≤ s ≤ α, and
S3: 1 ≤ t ≤ α.

Using s, t ≥ α ⇒ st ≥ αs+αt−α2, S1 =
(

1
2

)m+n−1∑n−1
s=α

(

n−1
s

)
∑m−1

t=α

(

m−1
t

) (

1
2

)st
≤

(

1
2

)m+n−1∑n−1
s=α

(

n−1
s

)
∑m−1

t=α

(

m−1
t

) (

1
2

)αs+αt−α2

≤
(

1
2

)m+n−1
2α2 ∑n−1

s=0

(

n−1
s

) (

1
2

)αs∑m−1
t=0

(

m−1
t

) (

1
2

)αt
≤

(

1
2

)m+n−1
2α2 (

1 +
(

1
2

)α)m+n−2
= o(

(

1
2

)m
+
(

1
2

)n
), choosing α large enough.

Similarly, S2 =
(

1
2

)m+n−1∑α
s=1

(

n−1
s

)
∑m−1

t=0

(

m−1
t

) (

1
2

)st
≤
(

1
2

)m+n−1
(n −

1)αα
∑m−1

t=0

(

m−1
t

) (

1
2

)t
= α(n − 1)α

(

1
2

)n ( 3
4

)m−1
= o(

(

1
2

)m
+
(

1
2

)n
).

A similar argument shows S3 = o(
(

1
2

)m
+
(

1
2

)n
).

Hence P (d 6→ a) − (
(

1
2

)m
+
(

1
2

)n
) ≤ S1 + S2 + S3 = o(

(

1
2

)m
+
(

1
2

)n
).

(iii) P (b 6→ d 6→ a)

Lemma 1.3. P (b 6→ d 6→ a) ∼ 2
(

1
2

)m+n−1
+
(

1
2

)2n

Proof. Let X ′ = X − {a, b}, Y ′ = Y − {d}. For the lower bound, we calculate
the probability P ({ the edge between b and d, and the edge between d and a,
form a directed path from a to b} ∩ ({Ob = Od = ∅} ∪ {Ob = Ia = ∅} ∪ {Id =

Ia = ∅})), which is 2
(

1
2

)m+n−1
+
(

1
2

)2n
−
(

1
2

)m+2n−3
, by inclusion-exclusion;

P (b 6→ d 6→ a) ≥ 2
(

1
2

)m+n−1
+
(

1
2

)2n
−
(

1
2

)m+2n−3
.

To get a working upper bound, it is sufficient to calculate the probability
of there being no path from b to d or from d to a, either of length at most 3.
Conditioning on Ia = S,Ob = T, Id = U,Od = V , there may be no edge from T
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to U , nor from V to S. The edges {b, d} and {a, d} form a directed path from
a to b. This implies that S and T must be disjoint.

Hence

P (b 6→ d 6→ a)

=
∑

S,T,U,V

P (b 6→ d 6→ a|Ia = S,Ob = T, Id = U,Od = V )P (Ia = S,Ob = T, Id = U,Od = V )

≤

(

1

2

)m+2n−2 n−1
∑

s=0

(

n − 1

s

) n−1−s
∑

t=0

(

n − 1 − s

t

)m−2
∑

u=0

(

m − 2

u

)(

1

2

)tu+s(m−2−u)

.

The sum of the terms for which s = t = 0, t = u = 0 or t = u− (m− 2) = 0
equals the lower bound. The remaining sum is split into the following cases: S1:
s, t ≥ α, S2: 1 ≤ t ≤ α ≤ s, S3 : 1 ≤ s ≤ α ≤ t, and S4 : 1 ≤ s, t ≤ α.

S1 ≤ 22α2 ( 1
2

)2n+m−2∑n−1
s=α

(

n−1
s

)
∑n−1−s

t=α

(

n−1−s
t

)
∑m−2

u=0

(

1
2

)α(m−2)
=

(

1
2

)2n+m−2
3n−1

(

1
2

)(α−1)(m−2)
= o(

(

1
2

)m+n−2
+
(

1
2

)2n
).

S2 ≤
(

1
2

)2n+m−2∑α
s=1

(

n−1
s

)
∑n−1−s

t=α

(

n−1−s
t

)
∑m−2

u=0

(

1
2

)tu+s(m−2−u)
≤
(

1
2

)2n+m−2
(n−

1)αα
∑n−1

t=α

(

n−1
t

)
∑m−2

u=0

(

m−2
u

) (

1
2

)αu+m−2−u
=
(

1
2

)2(m−2+n)
(n−1)αα2n−1

(

1 +
(

1
2

)α−1
)m−2

=

o(
(

1
2

)m+n−1
+
(

1
2

)2n
).

By symmetry with S2, we deduce S3 = o(
(

1
2

)m+n−1
+
(

1
2

)2n
).

S4 ≤
(

1
2

)2n+m−2
(n − 1)2αα2 = o(

(

1
2

)m+n−1
+
(

1
2

)2n
).

We conclude that

P (b 6→ d 6→ a) ∼ 2

(

1

2

)m+n−1

+

(

1

2

)2n

.

(iv) c 6→ b 6→ a

Lemma 1.4.

P (c 6→ b 6→ a) ∼ 3

(

1

2

)2n

Proof. For the lower bound, note that P (c 6→ b 6→ a) ≥ P ({Oc = Ob = ∅} ∪

{Oc = Ia = ∅} ∪ {Ib = Ia = ∅}) ≥ 3
(

1
2

)2n
− 2

(

1
2

)3n
.

For the upper bound, we will sum over U ⊆ Y ′, V = Y ′ − U , S ⊆ U ,
and T ⊆ V . When doing so, an expression for the probability that a given
vertex x′ ∈ X ′ is not a TU -witness and not a V S-witness is needed. The
probability of the complementary event is the probability of x′ being a TU -
witness or a V S-witness. The separate probabilities for these last two events

are P (x′ is a TU -witness) =
(

1 −
(

1
2

)|T |
)(

1 −
(

1
2

)|U |
)

and P (x′ is an SV -

witness) =
(

1 −
(

1
2

)|S|
)(

1 −
(

1
2

)|V |
)

. The probability of their intersection is
(

1 −
(

1
2

)|S|
)(

1 −
(

1
2

)|T |
)

, using S ⊆ U , T ⊆ V , By inclusion-exclusion, we get
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P (x ∈ X ′ is not a TU -witness, nor a V S-witness) = 1−
(

1 −
(

1
2

)|T |
)(

1 −
(

1
2

)|U |
)

−
(

1 −
(

1
2

)|S|
)(

1 −
(

1
2

)|V |
)

+
(

1 −
(

1
2

)|S|
)(

1 −
(

1
2

)|T |
)

, which simplifies to
(

1
2

)|U |
+

(

1
2

)|V |
−
(

1
2

)|T |+|U |
−
(

1
2

)|S|+|V |
+
(

1
2

)|S|+|T |
.

P (c 6→ b 6→ a)

=
∑

S,T,U,V

P (c 6→ b 6→ a|Ia = S,Oc = T, Ib = U,Ob = V )P (Ia = S,Oc = T, Ib = U,Ob = V )

≤
∑

S,T,U,V

P (no x ∈ X ′ is a TU -witness, nor a V S-witness)

(

1

2

)3n

=

(

1

2

)3n n
∑

u=0,u+v=n

(

n

u

) u
∑

s=0

(

u

s

) v
∑

t=0

(

v

t

)

(

(

1

2

)u

+

(

1

2

)v

−

(

1

2

)t+u

−

(

1

2

)s+v

+

(

1

2

)s+t
)m−3

.

The sum of the terms with s = t = 0 or u = 0 or v = 0 equals the lower

bound. The other terms sum to o(
(

1
2

)2n
), as we now turn to show. Since (u, t)

and (v, s) are interchangeable, we need only consider the following cases: S1: s,
t ≥ α; S2: 1 ≤ s ≤ α ≤ t, u; S3: 1 ≤ s ≤ α ≤ t, 1 ≤ u ≤ α; S4: 1 ≤ s, t ≤ α.

S1 ≤

(

1

2

)3n n−α
∑

u=α,u+v=n

(

n

u

) u
∑

s=α

(

u

s

) v
∑

t=0

(

v

t

)

(

(

1

2

)u

+

(

1

2

)v

−

(

1

2

)t+u

−

(

1

2

)s+v

+

(

1

2

)s+t
)m−3

≤

(

1

2

)3n n
∑

u=0,u+v=n

(

n

u

) u
∑

s=0

(

u

s

) v
∑

t=0

(

v

t

)(

1

2

)(α−2)(m−3)

= O(

(

1

2

)(β(α−2)+1)n

),

which is o(
(

1
2

)2n
) when choosing α large enough (e.g. α > 2(1 + 1/β)).

Note that t ≥ α ⇒ v ≥ α.

S2 ≤
(

1
2

)3n∑n−α
u=α

(

n
u

)
∑α

s=1 nα
∑v

t=α

(

v
t

) (

3
(

1
2

)α)m−3
= o(

(

1
2

)2n
) for large

enough α.

S3 ≤
(

1
2

)3n∑α
u=1 n2α

∑α
s=1

∑v
t=α

(

v
t

) ((

1
2

)α
+
(

1
2

)

+
(

1
2

)α)m−3
= o(

(

1
2

)2n
)

for large enough α.

S4 ≤
(

1
2

)3n
α3n3α = o(

(

1
2

)2n
).

Consequently P (c 6→ b 6→ a) − 3
(

1
2

)2n
= o(

(

1
2

)2n
).

(v) d 6→ b 6→ a

Lemma 1.5. P (d 6→ b 6→ a) ∼
(

1
2

)m+n−2
+
(

1
2

)2n
.
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Proof. Let X ′ = X − {a, b}, Y ′ = Y − {d}.
As before, we have the simple lower bound: P (d 6→ b 6→ a) ≥ P ({Od = Ob =

∅} ∪ {Od = Ia = ∅} ∪ {Ib = Ia = ∅}) ≥
(

1
2

)m+n−2
+
(

1
2

)2n
−
(

1
2

)m+2n−3
.

We bound the probability from above by the probability of there being no
path from d to b or from b to a of length at most 3 or 4 respectively. The edges
{a, d} and {b, d} are both directed towards d. Condition on Od = T , Ib = U ,
Ia = S, Ob = V . No edge is directed from T to U , and S ⊆ U . These conditions
imply that no x ∈ S is a V U -witness. In addition we forbid any x ∈ X ′ − T to
be a V S-witness. The events ’x is a V S-witness’ are independent for x ∈ X ′−T
and independent of the other necessary events just stated. We obtain

P (d 6→ b 6→ a)

=
∑

S,T,U,V

P (d 6→ b 6→ a|Od = T, Ib = U,Ob = V, Ia = S)P (Od = S, Ib = T, Ia = U, Ia = S)

≤

(

1

2

)2n+m−2 m−2
∑

t=0

(

m − 2

t

) n−1
∑

u=0

(

n − 1

u

) u
∑

s=0

(

u

s

)(

1

2

)st
(

(

1

2

)s

+

(

1

2

)v

−

(

1

2

)s+v
)m−2−t

=

(

1

2

)2n+m−2 n−1
∑

u=0

u
∑

s=0

(

n − 1

u

)(

u

s

)

(

(

1

2

)u

+

(

1

2

)v

+

(

1

2

)s

−

(

1

2

)s+v
)m−2

.

For s = 0 we obtain the following sum:
(

1
2

)2n+m−2∑n−1
u=0

(

n−1
u

) ((

1
2

)u
+ 1
)m−2

=
(

1
2

)2n+m−2
(

2m−2 + (n − 1)αα
(

3
2

)m−2
+
(

1 +
(

1
2

)α)m−2
)

=
(

1
2

)2n
+(n−1)αα

(

1
2

)2n ( 3
2

)m−2
+

(

1
2

)2n+m−2 (
1 +

(

1
2

)α)m−2
=
(

1
2

)2n
+ o(

(

1
2

)m+n−2
+
(

1
2

)2n
).

For v = 0 = n−1−u:
(

1
2

)2n+m−2∑n−1
s=0

(

n−1
s

)

(

1 +
(

1
2

)n−1
)m−2

=
(

1
2

)m+n−2
(

1 +
(

1
2

)n−1
)m−2

=

Θ(
(

1
2

)m+n−1
), as limn→∞

(

1 +
(

1
2

)n−1
)m−2

= 1.

Split the remaining sum into the following cases: S1 : 1 ≤ u ≤ α, S2 : 1 ≤
s ≤ α ≤ u, v, S3 : α ≤ s, u, v, S4 : 1 ≤ s, v ≤ α, S5 : 1 ≤ v ≤ α ≤ s.

Clearly, S1 = o(
(

1
2

)m+2n−2
+
(

1
2

)2n
).

S2 ≤ nα
(

1
2

)m+2n−2∑n−α
u=α

(

n−1
u

) (

2
(

1
2

)α
+
(

1
2

)s)m−2
= o(

(

1
2

)m+2n−2
+
(

1
2

)2n
),

for α > 21, which is easily seen by considering β ≤ 1 and β > 1 separately.

S3 ≤
(

1
2

)m+2n−2∑n−α
u=α

(

n−1
u

)
∑u

s=α

(

u
s

) (

3 ·
(

1
2

)α)m−2
≤
(

1
2

)m+2n−2 ( 3
2α

)m−2
·

3n−1 = o(
(

1
2

)m+n−2
+
(

1
2

)2n
).

S4 = o(
(

1
2

)m+2n−2
+
(

1
2

)2n
), since S4 is the sum of a constant (α2) number

of o(
(

1
2

)m+2n−2
+
(

1
2

)2n
) terms.

S5 ≤ αnα
(

1
2

)m+2n−2∑n−1
s=α

(

n−1
s

) ((

1
2

)α
+
(

1
2

)v
+
(

1
2

)α)m−2
= αnα

(

1
2

)m+n
(

(

1
2

)

+
(

1
2

)α−1
)m−2

=

o(
(

1
2

)m+2n−2
+
(

1
2

)2n
) for α > 2.

Finally,

P (d 6→ b 6→ a) ∼

(

1

2

)m+n−2

+

(

1

2

)2n

.
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1.2 Results

A good measure of the covariance between {x 6→ y} and {y 6→ z} is the relative
covariance,

P (x 6→ y 6→ z) − P (x 6→ y)P (y 6→ z)

P (x 6→ y 6→ z)
.

Note that this expression can be written as

1 −
P (x 6→ y)P (y 6→ z)

P (x 6→ y 6→ z)
= 1 −

P (x 6→ y)

P (x 6→ y|y 6→ z)
.

The results above can be used to compute the limit of the relative covariance
between {x 6→ y} and {y 6→ z},

lim
n→∞

P (x 6→ y 6→ z) − P (x 6→ y)P (y 6→ z)

P (x 6→ y 6→ z)
. (1.1)

As an example, suppose x, y ∈ X, z ∈ Y and β < 1.
Then

P (x 6→ y 6→ z) ∼

(

1

2

)m+n−2

+

(

1

2

)2n

∼

(

1

2

)2n

,

the expression for P (d 6→ b 6→ a).
Similarly

P (x 6→ y) ∼ 2

(

1

2

)n

,

and

P (y 6→ z) ∼

(

1

2

)m

+

(

1

2

)n

∼

(

1

2

)m

.

Putting these results together we get

lim
n→∞

P (x 6→ y 6→ z) − P (x 6→ y)P (y 6→ z)

P (x 6→ y 6→ z)
=

1

2
,

for this choice of x, y, z, and β.
The other possible values of (1.1) are summarized below. The result of our

example computation is underlined.

X Y β < 1 m = n β > 1

x, y, z -1/3 -1/3 -1/3
x, y z 1/2 1/5 -1

x, z y 1 1/5 0

From these results, one might suspect {c 6→ b} and {b 6→ a} to be negatively
correlated in any complete bipartite graph. However, numerical results suggest
that when n is much greater than m, the correlation is positive and can be arbi-
trarily close to 1 for arbitrarily large values of m and n (that is, of min(m,n)).
For example, the relative covariance in the case m = 3, n = 31, x, y, z ∈ X is
about 99.8%.

When m ∼ n, the limit of the relative covariance is not given by the table
above, except in the m = n case. It is, however, not difficult to see that the
value in the first row in the table actually is −1/3 even in the m ∼ n case.
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Another model

Let p ∈ [0, 1] and let an edge (x, y) with x ∈ X, y ∈ Y be directed this way
with probability p and the other way with probability 1−p. How do the results
change?

1.3 Exact recursions

We will now derive formulas allowing for efficient calculation of the probabilities
estimated above (as functions of m and n; here we assume m and n to be free
variables).

P (a 6→ b), P (a 6→ d)

Let X ′ = X − {a, b}, Y ′ = Y − {d}.
Note that for arbitrary x, y, P (x 6→ y) = P (y 6→ x) (reverse all arrows) and

that the probabilities in the title may be written as P (K 6→ a) for K = {b}
and K = {d}. Generalizing this to aribitrary sets K ⊆ X or K ⊆ Y we obtain
functions of K, m, n for which two simple recursion formulas hold.

As a notational convience, we will assume that K ⊆ X ′ and L ⊆ Y ′, L play-
ing a similar role to that of K. Now, let fX(m,n,K) = P (K 6→ a in Km,n) =
Pm,n(K 6→ a), and fY (m,n,L) = Pm,n(L 6→ a). Note that fX(m,n,K) and
fX(m,n,L) depend only (apart from m and n) on the cardinalities |K| and
|L| of K and L. Define fX(m,n, |K|) and fY (m,n, |L|) to be these common
values. We will often use k and l to denote |K| and |L| respectively. Hence,
using the notation just introduced, we have fX(m,n, 1) = Pm,n(a 6→ b) and
fY (m,n, 1) = Pm,n(a 6→ d).

P (OK = L) =
(

1 −
(

1
2

)k
)l
(

1
2

)(n−l)k
= (2k−1)l

2nk . Similarly, P (OL = K) =

(2l−k)l

2(m−k)l
. Now condition on OK = L. Observe that Pm,n(K 6→ a|OK = L) =

Pm−k,n(L 6→ a)), since any K → a-path passes through L (thinking of Km−k,n

as Km,n − K). Similarly Pm,n(L 6→ a|OL = K) = Pm,n−l(K 6→ a)
(

1
2

)l
, the

extra factor due to (cumbersome notation and) the fact L 6→ a ⇒ no arrow
from L is directed towards a. Using this, one has

fX(m,n, k) = fX(m,n,K) =
∑

L⊆Y ′

Pm,n(K 6→ a|OK = L)P (OK = L)

=

n
∑

l=0

(

n

l

)

(2k − 1)l

2nk
fY (m − k, n, l),

and

fY (m,n, l) = fY (m,n,L) =
∑

K⊆X′

Pm,n(L 6→ a|OL = K)P (OL = K)

=

m−1
∑

k=0

(

m − 1

l

)

(2k − 1)l

2mk
fX(m,n − l, k).

Observe that by definition, fX(m,n, 0) = fY (m,n, 0) = 1 for all m, n.
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P (d 6→ b 6→ a) and P (c 6→ b 6→ a)

Let gX(m,n,K) = gX(m,n, k) = Pm,n(K 6→ b 6→ a) and gY (m,n,L) =
gY (m,n, l) = Pm,n(L 6→ b 6→ a). Assume OK = L. Then the following equality
holds.

Pm,n(K 6→ b 6→ a|OK = L) = Pm−k,n(L 6→ b 6→ a) (1.2)

To prove (1.2), we argue that any orientation of Km,n whose restriction to
Km,n − K satisfies L 6→ b 6→ a, satisfies K 6→ b 6→ a (and the converse is
obvious). To see this, observe that any b → a-path in Km,n passes through L if
passing through K and that all edges between b and L are directed away from
b. In a similar (easier) vein,

Pm,n(L 6→ b 6→ a|OL = K) = Pm,n−l(K 6→ b 6→ a).

We may now write down recursion formulas for g·:

gX(m,n, k) = gX(m,n,K) = Pm,n(K 6→ b 6→ a)

=
∑

L⊆Y ′

Pm,n(K 6→ b 6→ a|OK = L)Pm,n(OK = L)

=
n
∑

l=0

(

n

l

)

(2k − 1)l

2nk
gY (m − k, n, l),

and

gY (m,n, l) = gY (m,n,L) = Pm,n(L 6→ b 6→ a)

=
∑

K⊆X′

Pm,n(L 6→ b 6→ a|OL = K)P (OL = K) =

m−2
∑

k=0

(

m − 2

k

)

(2l − 1)k

2lm
gX(m,n−l, k).

Note that gX(m,n, 0) = gY (m,n, 0) = fX(m,n, 1), since, by definition, the
empty set reaches nothing.

P (b 6→ d 6→ a)

Proceeding as before, let hX(m,n, k) = Pm,n(K 6→ d 6→ a) and hY (m,n, l) =
Pm,n(L 6→ d 6→ a). Then

hX(m,n, k) =
n−1
∑

l=0

(

n − 1

l

)

(2k − 1)l

2nk
hY (m − k, n, l),

and

hY (m,n, l) =

m−1
∑

k=0

(

m − 1

k

)

(2l − 1)k

2mk
hX(m,n − l, k).

Additionally, hX(m,n, 0) = hY (m,n, 0) = fY (m,n, 1).
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Random graphs

Definition 1.1. Given a graph G whose edges e are labeled by real numbers pe

lying in [0, 1], we define the random graph associated to G, or simply the random
graph G, to be the probability distribution on all subgraphs ω of G satisfying

P (ω) =
∏

e∈E(G):ωe=1

pe

∏

e∈E(G):ωe=0

(1 − pe).

Here ωe is 1 if the edge e is in ω and 0 otherwise.
For convenience, we will say that (G,p), or simply G, is a random graph,

without risk of confusion.
We can generate an outcome ω of G by deciding for each edge e whether

or not to include e in ω, the probability of including e being determined by pe,
and these choices are made independently of each other. Note that any random
graph G is completely described by its underlying weighted graph G.

By choosing G to be the complete graph on n vertices and letting all edge
labels equal some chosen p ∈ [0, 1] we obtain the random graph G(n, p), arguably
the single most investigated random graph model (see, for example, [1]).

Aas, 2010. 13
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Chapter 2

A conditional correlation in
G(n,p)

In this chapter we will study events in a random orientation of G(n, p), that is,
for each unordered pair of vertices {u, v} (the total number of vertices is n),

• with probability 1 − p, there is no edge between u and v,

• with probability p/2, there is a directed edge from u to v,

• with probability p/2, there is a directed edge from v to u,

these cases being mutually exclusive.
Let a, b, c denote distinct vertices in a randomly oriented G(n, p), A = {a 6→

c}, B = {c 6→ b}, C = {b 6→ a}, x = p/2, y = 1 − x.
In [10] it is shown that the relative covariance satisfies

P (A ∩ B) − P (A)P (B)

P (A ∩ B)
= 1 −

P (A)P (B)

P (A ∩ B)
=

2p − 1

3
. (2.1)

We now show that when conditioning on b → a, in our notation Cc, this
limit persists.

Theorem 2.1. Let A, B, C be the events described above. Then

P (a 6→ c 6→ b|b → a) − P (a 6→ c|b → a)P (c 6→ b|b → a)

P (a 6→ c 6→ b|b → a)
=

2p − 1

3
.

Proof. Using the notation introduced above, we may write the left hand side as

P (A ∩ B|Cc) − P (A|Cc)P (B|Cc)

P (A ∩ B|Cc)
= 1 −

P (A ∩ Cc)P (B ∩ Cc)

P (Cc)P (A ∩ B ∩ Cc)
. (2.2)

In [10] it is shown that P (A) = P (B) = P (C) = O(yn), P (A ∩ B) =
P (A ∩ C) = P (B ∩ C) = O(y2n).

Observe that P (A ∩ Cc) = P (A) − P (A ∩ C) = P (A) − P (A ∩ B) and
P (A ∩ B ∩ Cc) = P (A ∩ B) − P (A ∩ B ∩ C).

Aas, 2010. 15
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Suppose P (A ∩ B ∩ C) = o(y2n). In this case, we can rewrite (2.2) as

1 −
P (A)P (B)(1 − P (A∩C)

P (A) )(1 − P (B∩C)
P (B) )

P (Cc)P (A ∩ B)(1 − P (A∩B∩C)
P (A∩B) )

,

which, by the remarks above, has the same limit as

1 −
P (A)P (B)

P (A ∩ B)
,

so what remains is to show that P (A ∩ B ∩ C) = o(y2n) = o(P (A ∩ B))
indeed holds.

Let F1 = {Oa = Oc = ∅}, F2 = {Oa = Ib = ∅}, F3 = {Ic = Ib = ∅}, and
F = F1 ∪ F2 ∪ F3. Clearly, F ⊆ A ∩ B. From [10],

P (F ) = y2n−3(3 − 2y2n−3) ≤ P (A ∩ B) ≤ y2n−3(3 + o(1)).

Hence
0 ≤ P (A ∩ B) − P (F ) ≤ y2n−3o(1) = o(y2n),

and so we may write A∩B = (A∩B∩F )∪(A∩B∩F c) = F ∪(A∩B∩F c), with
P (A ∩ B ∩ F c) = o(y2n). Now in order to deduce P (A ∩ B ∩ C) = o(y2n), we
need to show that P (F ∩C) = o(y2n). It is sufficient to show that P (Fi ∩C) =
o(y2n). It is intuitively clear that P (F2 ∩ C) ≤ P (F1 ∩ C) = P (F3 ∩ C). Since
the three cases are all similar we prove only P (C ∩ F1) = o(y2n). Note that
1 − p ≤ 1 − p/2 = y.

P (C ∩ F1) =
∑

S,T⊆V −{a,b,c}:S∩T=∅

P (C ∩ F1 ∩ {Ia = S} ∩ {Ob = T})

=

n−3
∑

s=0

(

n − 3

s

) n−3−s
∑

t=0

(

n − 3 − s

t

)

xs+tyn−2−ty(1−p)n−2−syn−1P (no edge from S to T )

= yn
n−3
∑

s=0

(

n − 3

s

) n−3
∑

t=0

(

n − 3

t

)

xs+ty2n−4−s−tyst = ynO(y2n) = o(y2n),

the penultimate equality being more or less equivalent to lemma 2.1 in [10].

The original motivation of Theorem 2.1 was the conjecture of the events
{x → y} and {y → z}, conditional on {z → y}, being nonnegatively correlated,
in any random graph, which hence might admit a proof more conceptual than the
computation given above. The theorem above shows that there are graphs for
which this conjecture is false. Indeed, the graph in Figure 2 is a counterexample.
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x y

z

Figure 2.1: A counterexample
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Chapter 3

Two equivalent models

In this chapter we will use the notion of mixed random graphs, random graphs
having both undirected and directed edges. Note that this model is fundamen-
tally different from the random orientation model considered earlier.

Definition 3.1. A mixed random graph is a random graph in which each edge
is either directed or undirected, and any edge e is present with some given prob-
ability pe.

The following theorem is given in [11].

Theorem 3.1. Let G1 be a mixed random graph and G2 the result of picking an
arbitrary undirected edge e in G1 and turning it into two directed edges going in
opposite directions, both new edges being open in G2 with the same probability
as e in G1, independently of each other. Then

PG1
(x → y) = PG2

(x → y).

Proof. Note that removing e in G1 or its two copies in G2 gives the same graph,
call it G′.

Let H1 = {x → u, v → y, x 6→ y in G′}, H2 = {x → v, u → y, x 6→ y in G′},
and H = H1 ∪ H2. Note that H1 ∩ H2 = ∅. We regard H as an event in both
G1 and G2 (with PG1

(H) = PG2
(H)). The event H may intuitively be thought

of as ’the state of the edge(s) between u and v determines whether x → y or
x 6→ y, given the states of all other edges’.

Clearly PG1
(x → y|Hc) = PG2

(x → y|Hc). Now, PG1
(x → y|H1) =

PG2
(x → y|H1) = p, since x → y, conditioned on H1, holds in G1 or G2 iff {u, v}

is open in G1 or iff (u, v) is open in G2 respectively. We may use similar rea-
soning to show PG1

(x → y|H2) = PG2
(x → y|H2). Collecting these facts gives

PG1
(x → y) = PG1

(x → y|Hc)PG1
(Hc) + PG1

(x → y|H1)PG1
(H1) + PG1

(x →
y|H2)PG1

(H2) = PG2
(x → y|Hc)PG2

(Hc)+PG2
(x → y|H1)PG2

(H1)+PG2
(x →

y|H2)PG2
(H2) = PG2

(x → y).

Remark 3.1. Repeated application of this theorem shows that the probability of
{x → y} does not change when turning some set of undirected edges into directed
edges or the other way around. In particular this probability is the same in the
case when all edges are undirected as in the case when all edges are directed, a
result proved in [3].

Aas, 2010. 19
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x

yy

x

Figure 3.1: The graph on the left could be the result of giving the Petersen graph
a uniformly chosen random orientation. The graph on the right could similarly
be the outcome of a random graph process on the Petersen graph, where each
edge is removed with probability 1/2 (drawn lines correspond to open edges,
dashed lines to closed edges). As a consequence of Theorem 3.2, the probability
of seeing a (directed) cycle is the same in the two graphs.

This theorem may be modified slightly to the notion of random orientation
used in the previous chapter, as follows. Suppose instead G1 has an undirected
edge with parameter 1/2 and G2 has a randomly (uniformly) oriented directed
edge in the corresponding position. A similar proof shows that the P (x → y) is
the same in G1 and G2.

In [3] a stronger result is proved, namely that the out-clusters in the two
models have the same distribution. The argument above is easily modified to

cover this result as well, by first proving that P (
−→
Cx ⊆ T ) = P (

−→
Cx ⊆ T ) holds for

any subset T of vertices and from this deducing that P (
−→
Cx = T ) = P (

−→
Cx = T )

for any T . To prove the first claim we could condition on each of the events

HS = {x → u, x 6→ u,
−→
Cu = S} and H′

S = {x → v, x 6→ u,
−→
Cv = S} for each

subset S of nodes and observe that P (
−→
Cx ⊆ T |H) is the same in G1 and G2, for

any subset T of nodes.
Another result in the same spirit (and which can be proved in a similar way)

is the following (see [4]).

Theorem 3.2. Let G1 and G2 be as in Theorem 3.1. Then

PG1
(There is a directed cycle) = PG2

(There is a directed cycle)

This result is illustrated in Figure 3.1.



Chapter 4

The bunkbed conjecture

4.1 Bunkbeds

Given an undirected random graph G and a subset T ⊆ V (G) of its vertices,
define its associated bunkbed graph B(G) with transversal set T , B(G), as fol-
lows. Create two copies of G (call one copy the lower layer, G0, and the other
one the upper layer, G1), For each vertex t ∈ T , identify t0 and t1 and call the
resulting vertex t as well. These identifications potentially create parallel edges
in the resulting graph. Remove any of the two edges in each such pair. The
choice does not matter as the labels of two such edges necessarily are equal.
Define B(G) to be the resulting random graph. The formation of B(G) from G
is illustrated for a particular graph G in Figures 4.1-4.4. The set of vertices in
the bunkbed graph created when identifying pairs of vertices coming from T is
naturally identified with T . We define G′

i = Gi−T for i = 1, 2. If x is a vertex of
G, x0 and x1 will denote the two natural images of x in B(G). Similar notation
will be used for edges. By convention, for vertices and edges v and e inside T
we have v0 = v1 and e0 = e1. For an edge e0 or e1 of the bunkbed graph, pe is
the probability of either edge being open. Each edge is open independently of
all other edges.

Aas, 2010. 21
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u v

yx

Figure 4.1: A graph with a distinguished set T of vertices

x1

x0 y0

y1

v1

v0

u1

u0

Figure 4.2: Two copies of the graph, indicating the identifications to be per-
formed.

vu

y1x1

x0 y0

Figure 4.3: The result of identifying pairs of vertices coming from T .

vu

x1 y1

y0x0

Figure 4.4: Here, one of the two parallel edges has been removed.
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4.2 The bunkbed conjecture

The bunkbed conjecture (BBC): For any two vertices x, y and subset of vertices
T of any random graph G,

PB(G)(x0 ↔ y0) ≥ PB(G)(x0 ↔ y1).

This is intuitively clear. However the conjecture has resisted many (suppos-
edly all) attempts of being proved rigourously. This conjecture was formulated
by Kasteleyn in 1985, and since [8] it is known as the bunkbed conjecture.

The conjecture is clearly true if x, y /∈ T or T = ∅. These possibilities will
be ignored in the sequel.

When |T | = 1, say T = {t}, the conjecture is a consequence of Harris’
theorem on increasing events, viz. Clearly, P (x0 ↔ y0|x0 6↔ t) ≥ P (x0 ↔
y1|x0 6↔ t), since the right hand side is 0. Since {x0 ↔ t} and {t ↔ y1} are
independent, P (x0 ↔ y1|x0 ↔ t) = P (t ↔ y1|x0 ↔ t) = P (t ↔ y1). Hence
P (x0 ↔ y0|x0 ↔ t) = P (t ↔ y0|x0 ↔ t) ≥ P (t ↔ y0) = P (t ↔ y1), the
inequality following from the following special case of Harris’ theorem [13],

Theorem 4.1. If s, a, b, t are four (not necessarily distinct) vertices in some
random graph G, the events {s ↔ t} and {a ↔ b} are positively correlated, that
is

P (s ↔ t, u ↔ v) ≥ P (s ↔ t)P (u ↔ v),

or, equivalently,
P (s ↔ t|u ↔ v) ≥ P (s ↔ t).

Hence P (x0 ↔ y0) ≥ P (x0 ↔ y1) in this case.
In [6] the following interesting generalisation of the theorem above is proved.

Theorem 4.2. For any s, a, b, t ∈ V (G), G a random graph,

P (s ↔ a, s ↔ b|s 6↔ t) ≥ P (s ↔ a|s 6↔ t)P (s ↔ b|s 6↔ t).

This statement, in contrast to Harris’ theorem, is not intuitively clear (at
least not to the present author).

The motivation of Theorem 4.2 was in fact the bunkbed conjecture. The
theorem implies that P (x0 ↔ y0|s 6↔ t) ≥ P (x0 ↔ y1|s 6↔ t) when T = {s, t}
contains only two vertices. Hence what remains open in the case |T | = 2 is to
show that P (x0 ↔ y0|s ↔ t) ≥ P (x0 ↔ y1|s ↔ t). It is interesting to note that,
conditional on {s ↔ t}, the events {s ↔ a} and {s ↔ b}, are not positively
correlated in general. Hence this remaining open case needs an argument more
specific to bunkbed graphs (supposing, as we are, the conjecture holds).

In [12], the bunkbed conjecture is shown to hold true for all outerplanar
graphs G. This result makes use of the model described below and proves a
generalization of the conjecture to hypergraphs.

Minimal counterexamples

Let G, x, y be a minimal counterexample to the bunkbed conjecture in the sense
that PB(x0 ↔ y0) < PB(x0 ↔ y1), where B = B(G), but that this is not true
of any minor of G. Recall that a minor of a graph G is a graph obtained from
G by contracting or deleting edges. For any random graph H having vertices
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x0, y0 and y1, let ∆ = PH(x0 ↔ y0) − PH(x0 ↔ y1), and F be any event.
For example, e0e1 will denote the event {e0 is open and e1 is closed}. Define
∆H(F ) := PH(x0 ↔ y0|F ) − PH(x0 ↔ y1|F ). Let e be an edge in G with both
endpoints in T . In this case e0 = e1. Then

∆B = pe∆B/e + (1 − pe)∆B−e = pe∆B(G/e) + (1 − pe)∆B(G−e),

which by hypothesis (G/e and G− e are not counterexamples) is positive. This
contradicts G being a counterexample. Hence there can be no edge with both
endpoints in T .

Let e be an edge in G with at least one endpoint outside T , so that e0 6= e1.
Then

∆B = ∆B(e0e1) + pe(1 − pe)(∆B(e0e1) + ∆B(e0e1)) + (1 − pe)
2∆B(e0e1).

By hypothesis, ∆B(e0e1) = ∆B(G/e) and ∆B(e0e1) = ∆B(G−e) are both non-
negative. Hence ∆B(e0e1)+∆B(e0e1) must be negative. Disproving this would
give the desired contradiction that no minimal counterexample can exist. Hence,
to show the bunkbed conjecture, it is sufficient to show that P ′(x0 ↔ y0) ≥
P ′(x0 ↔ y1), where P ′ is the probability measure conditional on

⋂

e∈E(G){ ei-

ther e0 is open and e1 is closed or e0 is closed and e1 is open}. Note that this
model easily is thought of as a process in G rather than B(G).

4.3 Expected cluster size

To prove BBC, we would like to show that for each pair of vertices (x, y), the
inequality

P (x0 ↔ y0) − P (x0 ↔ y1) ≥ 0 (4.1)

holds.
An obvious necessary condition is

∑

y

(P (x0 ↔ y0) − P (x0 ↔ y1)) ≥ 0, (4.2)

for each vertex x.
In fact, this necessary condition is also sufficient for BBC to hold.

Theorem 4.3. If (4.2) holds for every random graph, then (4.1) holds for every
random graph.

Proof. Let (G,p) be a random graph. Assume for the sake of contradiction
that there are two vertices x, z in G for which (4.1) fails, that is, for which
PG(x0 ↔ z0) < PG(x0 ↔ z1). For each r ≥ 0 define a random graph (Gr,pr)
by adding r new vertices of degree one, all connected to z. We leave T fixed.
Let the labels of the new edges be 1 and keep the labels of the original edges.
A simple computation shows that
∑

y

(PGr
(x0 ↔ y0)−PGr

(x0 ↔ y1)) =
∑

y

(PG(x0 ↔ y0)−PG(x0 ↔ y1))+r(PG(x0 ↔ z0)−PG(x0 ↔ z1)).

By hypothesis this expression tends to −∞ as r tends to infinity. Hence there
is some r0 for which this value is negative. Hence the graph Gr0

contradicts
(4.2).
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Actually, the left hand side of (4.2) has a more direct interpretation. To see
this, observe that the random variable |Cx0

|, where Cx0
denotes the (random)

set of vertices connected to x0 by open paths, can be written

|Cx0
| =

∑

z∈B(G)

I(x0 ↔ z),

where I(x0 ↔ z) is the indicator variable of the event {x0 ↔ z}. Taking
expectations, we have

E|Cx0
| = E

∑

z∈B(G)

I(x0 ↔ z) =
∑

z∈B(G)

E(I(x0 ↔ z)) =
∑

z∈B(G)

P (x0 ↔ z).

A similar argument (splitting the sum into the cases z ∈ G0 and z ∈ G1

(the terms corresponding to z ∈ T are all zero)) shows that the left hand side
of (4.2) may be written

∑

y

(P (x0y0) − P (x0y1)) = E(|Cx0
∩ G0| − |Cx0

∩ G1|).

Hence BBC is equivalent to the possibly even more intuitively clear state-
ment that E|Cx0

∩ G0| ≥ E|Cx0
∩ G1| for each graph G. Observe that this is

equivalent to the statement E|Cx0
∩ G′

0| ≥ E|Cx0
∩ G′

1|.

It is now natural to sum over both x and y in (4.1) instead of just one of the
vertices, and ask whether the result is nonnegative:

∑

x,y

(P (x0y0) − P (x0y1)) =
∑

x

E(|Cx0
∩ G0| − |Cx0

∩ G1|) ≥ 0 (4.3)

This is another necessary condition for (4.1), whose sufficiency for (4.1) seems
harder to prove. However, it’s easier to show that this statement is indeed true.

Theorem 4.4. For any random graph G, the expression in (4.3) is nonnegative.

Proof. Below, Q denotes a partition of the vertices of B(G), sums over Q run
over all possible such partitions, and P (·|Q) is the probability measure condi-
tional on
HQ := {the equivalence classes of the relation ’x reaches y’ are given by the blocks of Q}.
By P (Q) we mean P (HQ). As usual the elements of a partition are blocks B,
that is, pairwise disjoint subsets of vertices whose union is all of V (B(G)).

For a vertex x in the bunkbed, let Xx =







|Cx ∩ G0| − |Cx ∩ G1| if x ∈ G′
0

0 if x ∈ T
|Cx ∩ G1| − |Cx ∩ G0| if x ∈ G′

1

Let B be a block of Q. Since Xx depend only on which vertices are reachable
by open paths from which, Xx is completely determined given HQ. To evaluate
∑

x∈B E(Xx|Q), note that for x ∈ B∩G′
0, we have E(Xx|Q) = |B∩G′

0|−|B∩G′
1|;

for x ∈ T , E(Xx|Q) = 0, and for x ∈ B ∩ G′
1, E(Xx|Q) = |B ∩ G′

1| − |B ∩ G′
0|.

Hence
∑

x∈B

E(Xx|Q) = (|B ∩ G′
0| − |B ∩ G′

1|)
2.
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Now,

2
∑

x,y∈G

(P (x0 ↔ y0) − P (x0 ↔ y1)) = 2
∑

x∈G

E(|Cx0
∩ G0| − |Cx0

∩ G1|)

=
∑

x∈B(G)

E(Xx)

=
∑

Q

∑

B∈Q

E(
∑

x∈B

Xx|Q)P (Q)

=
∑

Q

∑

B

(|B ∩ G′
0| − |B ∩ G′

1|)
2P (Q) ≥ 0.

Note that a partial sum of the sum in (4.3) is
∑

x(P (x0 ↔ x0) − P (x0 ↔
x1)) =

∑

x(1−P (x0 ↔ x1)), which certainly is nonnegative. Do the other terms
have a positive sum as well? That is, does

∑

x,y:x6=y

P (x0 ↔ y0) − P (x0 ↔ y1) ≥ 0 (4.4)

hold? If so, this would show that in any bunkbed graph, there are two differ-
ent vertices x, y for which P (x0 ↔ y0) ≥ P (x0 ↔ y1). Hence the following
conjecture is a weaker version of BBC.

Conjecture 4.1. For any random graph G, (4.4) holds.

The inequality (4.4) has an interesting reformulation:

Claim 4.1.

∑

x,y:x6=y

P (x0y0)−P (x0y1) =
∑

B⊆V (B(G))

(

(|B ∩ G′
0| − |B ∩ G′

1|)
2 − (|B ∩ G′

0| + |B ∩ G′
1|))
)

P (B),

where P (B) denotes the probability of the subset B of nodes forming a component
in B(G).

This claim is easily proved by the method used in Theorem 4.4.
If we attempt a similar construction used in 4.3 to prove that (4.3) ⇒ (4.2),

we get a non-trivial, though nonpositive, lower bound on P (x0 ↔ y0)−P (x0 ↔
y1) in terms of P (x0 ↔ x1) and P (y0 ↔ y1).

Let x and y be vertices in a random graph G. Construct Gr by joining r− 1
new vertices each to x and y. These new r-sets of vertices will be denoted by X
and Y . Probabilities taken in G are denoted by P , those in Gr by P ′. The sum

∑

u,v∈V (Gr)

(P ′(u0 ↔ v0) − P ′(u0 ↔ v1))

is a quadratic polynomial in r whose coefficient in front of r2 necessarily is
nonnegative, as we otherwise would be able to find counterexamples to (4.3).
This coefficient is easily computed to be 2(P (x0 ↔ y0) − P (x0 ↔ y1)) + (1 −
P (x0 ↔ x1)) + (1 − P (y0 ↔ y1)) (these are, from the left, the contributions
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from the cases (u ∈ X, v ∈ Y or v ∈ Y, u ∈ X), (u, v ∈ X), (u, v ∈ Y )). We
deduce that for any graph G,

P (x0 ↔ y0) − P (x0 ↔ y1) ≥
P (x0 ↔ x1) + P (y0 ↔ y1)

2
− 1.

Interestingly, this inequality is an equality for graphs with P (x0 ↔ x1) =
P (y0 ↔ y1) = 1. It seems highly probable that the left hand side is large when
the right hand side is small (varying G).

One may prove a similar inequality concerning E|Cx0
∩ G0| − E|Cx0

∩ G1|
and P (x0 ↔ x1) by replacing each vertex except x by an r-clique.

4.4 Limiting cases

Consider a bunkbed graph with all edge parameters equal to some variable
p ∈ [0, 1].

Letting all edge parameters equal the same number is not a very strong
restriction, since, by adding parallel edges and subdividing edges, any (finite)
random graph can be arbitrarily well approximated (two random graphs are ap-
proximately equal if all values P (x ↔ y) are approximately equal) by a random
graph with all edge parameters equal to some (small) number p.

When p → 0+, will Pp(x0 ↔ y0) − Pp(x0 ↔ y1), suitably normalised, tend
to a nonnegative value?

The following asymptotics are easily verified:

Pp(x0 ↔ y0) ∼ N(x0, y0)p
d

and

Pp(x0 ↔ y1) ∼ N(x0, y1)p
d′

,

where d is the distance between x0 and y0, d′ the distance between x0 and
y1, and N(s, t) is the number of distinct paths of minimal length between s and
t. Observe that d ≤ d′. If d = d′ then N(x0, y0) ≥ N(x0, y1), as can be shown
by mapping length d paths α from x0 to y1 injectively to length d paths β from
x0 to y0; let β be the path following α to the last vertex t at which α enters
T . The last segment of β will be the mirror image of the segment of α coming
after t.

Graphs for which either of these inequalities are strict will hence satisfy the
bunkbed conjecture in the limit p → 0.

When p → 1 the interesting quantities, in a sense to be specified, are
C(x0, y0) and C(x0, y1), where C(s, t) is the size of a minimum cut separat-
ing s and t. Suppose the number of edges in the bunkbed is m, and define

Ak = #{subgraphs with x0 ↔ y0 and exactly m − k edges},

and

Bk = #{subgraphs with x0 ↔ y1 and exactly m − k edges}.

Then P (x0 ↔ y0) =
∑

k Akpm−k(1−p)k and P (x0 ↔ y1) =
∑

k Bkpm−k(1−
p)k.
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Note that if k < min C(x0, y0), C(x0, y1)) =: D then Ak =
(

m
k

)

= Bk. Hence
f(p) := Pp(x0 ↔ y0) − Pp(x0 ↔ y1) satisfies f(p) = α(1 − p)D + o((1 − p)D)
for p close to 1 and some constant α. For the bunkbed conjecture to hold for
p arbitrarily close to 1, we must have α ≥ 0. But α = C(x0, y0) − C(x0, y1)
whence C(x0, y0) ≥ C(x0, y1). By the min cut-max flow theorem this is the
same as F (x0, y0) ≥ F (x0, y1), where F (s, t) is the maximum flow between s
and t in the flow network obtained by turning each edge of the bunkbed into a
two-way unit capacity edge. Thus, in the limit p → 1−, the bunkbed conjecture
predicts

F (x0, y0) ≥ F (x0, y1).

Indeed, with some effort, we can show this to hold true in any bunkbed flow
network.

Theorem 4.5. In the notation above,

F (x0, y0) ≥ F (x0, y1).

Proof. Let F be a maximal flow from x0 to y1; that is, x0 is the unique source
of F , y1 the unique sink. A flow is said to be feasible if it satisfies the capacity
constraints at all edges, and a maximal flow is understood to be feasible by
definitio by definition.. Since our capacity constraints are all integers (indeed,
all 1), by the well-known integrity theorem from flow theory (see, for example,
theorem 8.1 [7]), we can assume F to be integer valued. Since the capacity
constraint on each edge is 1, this means that F takes either the value 0 or 1 on
each edge.

We prove the theorem by finding a feasible flow f ′ from x0 to y0 of same
strength as F .

Observe that F can be decomposed as F = F0 + FT + F1, where F0 is zero
on all edges having no endpoint in G′

0, FT is zero on edges not having both
endpoints in T , and F1 is zero on all edges having no endpoint in G′

1.

We can think of F0 as a flow from x0 to T , FT a flow inside T , and F1 a flow
from T to y1.

Let f = F0 + FT + ϕF1, where ϕF1 is the flow satisfying ϕF1(u, v) =
F1(ϕu, ϕv) for all u, v. Here ϕ is the involution turning the bunkbed ’up-side
down’, that is, ϕ(z0) = z1, ϕ(z1) = z0, and ϕ(t) = t for all z ∈ V (G), t ∈ T .

Observe that f is zero on all edges having at least one endpoint in G′
1.

The flow f is clearly a flow from x0 to y0 of the same strength as F .

However f need not be a feasible flow, since the flow of f over some edges
might equal 2; we call such edges f-bad. It is easy to see that if the flow of f is
not 2 over any edge, then f is feasible.

Given a directed cycle or directed path X, denote by u(X) the unit flow
associated to X given by sending one unit of flow along each edge of X.

Since the only source of F0 is x0 and all sinks lie in T , F0 can be written as
the sum of u(P ), where the P are directed paths going from x0 to vertices in T .
These paths will be called U paths (’U’ as in going Up from x0 to T ). Similarly,
the paths going from T to y0 corresponding to a unit flow decomposition of ϕF1

will be called D paths.

Clearly, any two U paths and any two D paths are edge disjoint.

We would like to turn f into a feasible flow f ′ of the same strength.
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To achieve this, we will first find a collection C of directed paths and directed
cycles satisfying certain properties.

Initially, our collection will consist of directed paths only. These paths will
be initial segments of D paths. Specifically, for each D path α containing at
least one f -bad edge, include in C the initial segment of α ending with the last
f -bad edge occurring along α.

Observe that C satisfies the following properties

• Each path P in C begins with an edge incident to some vertex in T and
ends with an f -bad edge. We denote this f -bad edge by e(P ).

• No two elements in C share an edge in the same direction.

• The set of constraints violated by f − u(X) is a subset of those violated
by X, for each element (path or cycle) X in C. (Phrased differently, the
flow of f is at least 0 at any edge of X, taking the positive direction to be
the direction of X.)

• Each f -bad edge is included in exactly one element of C (in the direction
of flow of e).

Below we will define an operation on C which preserves these properties.
Note that each f -bad edge is included in exactly one D path and exactly

one U path. Conversely, any edge which is shared in the same direction by one
U path and one D path is f -bad.

Let P be a path in C, e = e(P ) its final (necessarily f -bad) edge. Denote by
S(P ) the segment coming after e of the unique U path going through e. Hence
S(P ) is a path starting with an edge incident to e(P ) and ending with an edge
incident to some vertex of T (the sink of the corresponding U path; note that
the direction of flow of the U path must coincide with the direction of flow of
e).

When the operation cannot be applied any further, the resulting collection
will have the following additional property

• For each path P , there are no f -bad edges along S(P ).

Later, in order to show that the algorithm below terminates after a finite
number of operations, we will show that the (initially finite!) integer describing
the number of jumps, to be defined, decreases strictly after each operation. Each
element of C (path or cycle) consists of f -bad edges and subpaths (which include
no f -bad edges themselves) joining these. If the element is a path, in addition
we have an initial segment starting at a vertex of T and ending at the first f -bad
edge occurring along this path.

We call such subpaths steps (hence elements of C are alternating concate-
nations of f -bad edges and steps). Of course, a step might have zero length,
corresponding to two consecutive f -bad edges. At each point we will consider
each step of each element in C to be a jump or not. In our initial collection we
consider all steps to be jumps.

Below, the interesting quantity will be the total number of jumps among all
elements of C. This integer will be called the jump number (of C).

We will use the fact (which is a consequence of how our initial collection and
the operation below are defined) that each step of any element in C that is not
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U path

U path

Q

P

e(P)

x0

Vertices in T

e’

e

Figure 4.5: Case (i): before
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Figure 4.6: Case (i): after

a jump, is a subpath of a U path, and that the two f -bad edges this step links
lie on this same U path (and the flow of these edges are in the direction of the
U path).

The operation

Suppose P is a path in C for which S(P ) includes at least one f -bad edge. Let e
be the first f -bad edge occurring along S(P ). Let Q be the (unique) element of
C traversing e. A few cases arise. Cf. figures 4.5 - 4.10. These figures convey the
general picture rather well, bearing in mind the following remarks: two f -bad
edges might be consecutive, e′ (defined separately in each case) might lie on the
same U path as e (but necessarily before e(P ) on this U path, by choice of e),
and in case (ii), Q might end at e.

Case (i). Q is a cycle

As will be seen in case (iii) (the only point where cycles are added to C), any
cycle in C will have at least two f -bad edges. Let e′ be the f -bad edge occurring
before e on Q.

Let P ′ be the path following P to e(P ), taking S(P ) to e, and ending with
the part of Q between e and e′ (in the direction of Q). This will include all
f -bad edges of Q in P ′. The jumps of P ′ are defined to be the corresponding
jumps of P and Q. In particular, the step of P ′ from e(P ) to e is not considered
a jump of P ′.

Remove P , Q and add P ′ to C.
Since the step of Q between e′ and e is a jump (this follows from our fact

concerning jumps stated above; if this step was not a jump, e′ would be an
f -bad edge strictly between e(P ) and e on S(P ), contradicting the choice of e),
the jump number decreases by 1 in this case.

Case (ii). Q is a path different from P

Suppose there is no f -bad edge occurring along Q before e. In this case simply
remove Q from C.
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Otherwise, let e′ be the f -bad edge along Q before e. Let Q′ be Q cut off
after e′, where a step of Q′ is considered a jump if and only if the corresponding
step in Q is a jump. Remove Q and add Q′ to C in this case.

Let P ′ be the path starting with P , following S(P ) to e, ending with part
of Q coming after e (of course, this part might be empty). The jumps of P ′ are
defined to be the corresponding jumps of P and Q. In particular the step of P ′

between e(P ) and e is not considered a jump of P ′. Add P ′ to C.
In this case the jump number decreases by one (we ’lose’ the step, which is

a jump, of Q from e′ to e. This step being a jump is motivated in the same way
as in (i)).

Case (iii). Q = P

If there is some f -bad edge occurring along P before e, then let R be P cut off
after the latest such edge (we define the jumps of R to be precisely those steps
of R that correspond to jumps of P ). Add R to C in this case.

Let O be the cycle ’starting’ at e, following P to e(P ), then following S(P )
back to e. The jumps of O are the same as those of P from e to e(P ). In
particular the step of O from e(P ) to e is not considered a jump. Add O and
remove P from C.

The jump number decreases by 1 in this case as well, since the step of P
between e′ and e is a jump.

Note that in each case of the operation, the jump number decreases by 1. It
follows that the operation can be applied only a finite number of times.

Now let C be the collection obtained by repeatedly applying the operation
to the initial collection until this can be done no more.

Given a path P in C, let E(P ) be the path P followed by S(P ). As a
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consequence of the operation not being applicable to C, no two E(P ) share an
edge in the same direction (and, being subpaths of U paths, the S(P ) are all
edge disjoint). In addition, no E(P ) shares an edge in the same direction with
any cycle in C.

We claim that

f ′ = f +
∑

P∈C is a path

(ϕu(E(P )) − u(E(P ))) −
∑

O∈C is a cycle

u(O)

is a feasible flow from x0 to y0 of the same strength as F .
Clearly, the strengths of the source at x0 and the sink at y0 are of the same

strength as F .
There are no other sources or sinks in f ′, as subtracting circulation flows or

adding flows of the form u(P ) − ϕu(P ), where ϕ is any function of flows fixing
the endpoints of the directed path P (the endpoints of our P :s are in T ) does
not introduce sources or sinks.

Finally we need to show that f ′ violates no constraints.
For edges with at least one endpoint in G′

1, this is a consequence of the
elements of C sharing no edge in the same direction, and it is immediate for
edges with both endpoints in T , as f ′ conincides with f on such edges.

By the properties of C, decreasing the flow along any element of C does not
violate constraints already violated. Moreover, the flow over any f -bad edge
along an element of C is decreased by 1. Since each f -bad edge is included in
exactly one C-element, f ′ has no ′f ′-bad’ edges.

This proves our claim, proving the theorem.

We now consider an example, illustrating the idea of the proof. Consider
figure 4.11. The horizontal lines are the U paths containing at least one f -bad
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Figure 4.11: An example

edge. The D paths containing at least one f -bad edge are 1a2b3, 4c5d6e7f8, and
9g10h11i12. Here the numbers refer to maximal subpaths of D paths containing
no f -bad edges (that is, steps, if we were talking about paths from C; we are not
yet). The f -bad edges are named a, . . . , i and are drawn bold. There will be
no ambiguity between the flow f and the f -bad edge f . The vertices indicated
with black dots, apart from x0 and y0, are vertices in T . Initially we define C
to be {1a2b, 4c5d6e7f, 9g10h11i}.

Applying the operation (case (ii)) to the f -bad edge i, we get

C = {1a2b, 4c5d6e7f → i, 9g10h},

where we use the notation f → i to indicate following the common U path of f
and i from f to i.

Next we apply the operation (case (iii)) to the f -bad edge d, and get

C = {1a2b, 4c, 6e7f → i → d, 9g10h, 4c},

where 6e7f → i → d is a cycle (which we could just as well have written
e7f → i → d6 et.c.).

Apply the operation (case (ii)) to g, yielding

C = {1a2b, 4c → g10h, 6e7f → i → d}.

Operate (case (i)) on f to get

C = {1a2b, 4c → g10h → f → i → d6e}

Finally, operate (case (ii)) on r, to give the final collection

C = {2b → a, 4c → g10h → f → i → d6e}.
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Above steps correspond to numbered subpaths and arrows (’→’). The steps
considered to be jumps are precisely the numbered ones (omitting, of course,
3, 8, and 12). Hence, the jump number of C given a description of C as above is
simply number of numbers occurring in this description.

Observe that C contains one path, P , and one cycle, O. We construct f ′

from f by decreasing the flow of f along O and ’flipping’ E(P ) from G0 to G1.
Here E(P ) is the path P followed by S(P ), as before.

In the proof above, we could actually start with any feasible integer valued
(not necessarily maximal) flow from x0 to y1. Hence the proof actually describes
a way to map families of disjoint x0y1 paths into families of disjoint x0y0 paths
(of the same number), which might be a useful tool in proving the full bunkbed
conjecture.

4.5 When the transversal set is a cut set

As observed in [12], when x and y belong to different components of G − T ,
P (x0 ↔ y0) = P (x0 ↔ y1), as the following mirror argument shows (taken from
[12]).

Lemma 4.1. If x and y belong to different components of G−T , then P (x0 ↔
y0) = P (x0 ↔ y1).

Proof. We give an involution ϕ on the probability space B(G) taking {x0 ↔ y0}
to {x0 ↔ y1}. This shows that the probability of the these two events coincide.
Edges in B(G) are called upper, lower, or central if they have at least one
endpoint in G0, at least one in G1 or both in T respectively. The event ϕ(ω) is
obtained from ω by interchanging the state of upper and lower edges having at
least one endpoint whose image in G is in the component of y in G − T . The
states of all other edges (in particular, of all central edges) are kept constant.
It is readily verfied that ϕ satisfies the properties sought for.

The converse of the above lemma does not hold, as may be seen by choosing
any graph not satisfying the hypothesis but satisfying P (x0 ↔ x1) = 1 or
P (y0 ↔ y1) = 1. However, the converse seems reasonable to hold if we in
addition assume all entries of p to be strictly less than 1. Note that this does
not rule out important cases, since, by contracting edges, a bunkbed graph with
some entry pe = 1 is equivalent to a smaller bunkbed graph. A similar remark
applies to the case pe = 0, although this is not needed here.

We formulate the converse as a conjecture.

Conjecture 4.2. Suppose G is a random graph having no edge label equal to
1. Let x and y be two vertices of G with PB(G)(x0 ↔ y0) = PB(G)(x0 ↔ y1).
Then any path between x and y passes through T .

Proving this conjecture is not as peripheral as might seem at first sight.

Theorem 4.6. Conjecture 4.2 implies the bunkbed conjecture

Proof. Suppose Conjecture 4.2 is true. Let G be a counterexample to the
bunkbed conjecture with Pp0

(x0y0) < Pp0
(x0y1) for some vertices x, y in G

and some probability vector p0.
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Define f : [0, 1]E(G) → R by f(p) = Pp(x0y0) − Pp(x0y1) Since P (x0y0) 6=
P (x0y1), by Lemma 4.1, there is a path from x to y contained in G−T . Choosing
a probability vector p′ which is equal to 1 on the edges of this path and 0
elsewhere, there is some point in [0, 1]E(G) for which f is positive. Since f(p0) <
0 and f is continuous (indeed, a polynomial in p), the mean value theorem
(observing that [0, 1]E(G) is connected!) gives that there is some point ξ ∈
(0, 1)E(G) for which f(ξ) = 0. By the converse of Claim 1, this means that x
is separated from y in G − T , which is a contradiction. Hence there can be no
such counterexample G.

Let Ak = #{configurations in which x0 ↔ y0 and the number of open edges
is k}, Bk = #{configurations in which x0 ↔ y1 and the number of open edges
is k}.

Denote the total number of edges in the graph by m.
We have

P (x0 ↔ y0) =

m
∑

k=1

Akpk(1 − p)m−k

and

P (x0 ↔ y1) =
m
∑

k=1

Bkpk(1 − p)m−k.

If p is transcendent over the reals, we must have Ak = Bk for each k (ob-
serving that

(

p 7→ pk(1 − p)m−k
)m

0
constitute a basis of the real vector space of

all polynomials of degree ≤ m), meaning that there is an involution ϕ satisfy-
ing the requirements in the proof of Lemma 4.1. This is a first step in boldly
reversing the proof of lemma 4.1. It does however seem hard to extend this idea
to algebraic p, let alone to deduce that T separates x and y from the fact that
there is such an involution ϕ.

4.6 Differentiation

Viewing fB(p) := Pp(x0 ↔ y0) − Pp(x0 ↔ y1) as a function of a variable
p ∈]0, 1[E(G), we can derive some conditions that a minimal counterexample to
the bunkbed conjecture must satisfy.

Let (G,p) be a counterexample to the bunkbed conjecture such that for any
edge e in G, neither G/e nor G − e is a counterexample. Let B = B(G).

If H is a sub-random graph of B containing x0, y0, x1, y1, then fH will denote
PH(x0 ↔ y0) − PH(x0 ↔ y1).

Note that fB = p2
efB/e0,e1

+ pe(1− pe)fB/e0−e1
+ pe(1− pe)fB/e1−e0

+ (1−
pe)

2fB−e0,e1
. Since G is minimal, f must be positive for pe = 0 and pe = 1, as

these cases may be modeled by smaller bunkbed graphs. Moreover, for f to be
negative for some value of pe in ]0, 1[, the coefficient in front of p2

e in f must be
positive. Note that B/e0, e1 = B(G/e). If pm is the value of p mimimizing f(p)
we must have 0 < pm < 1.

The conditions d2fB

dp2
e

> 0 and pm < 1 reduce to

fB(G/e) + fB(G−e) > fB/e0−e1
+ fB−e0/e1

and

fB(G/e) >
fB/e0−e1

+ fB−e0/e1

2
.



36 Chapter 4. The bunkbed conjecture

4.7 Electrical networks

The bunkbed conjecture has an interesting, and much easier-to-prove, analogue
for electrical networks, as follows.

Theorem 4.7. Let G be a graph, where each edge is assigned a positive real
number, called the resistance of that edge. Construct a bunkbed network in the
obvious way, having chosen some transversal set T of nodes from G. Suppose the
electric potential V satisfies the boundary values V (x0) = 0, V (y0) = V (y1) = 1.
Then the electric current entering y0 is at least as large as the electric current
entering y1.

Proof. For any vertex x in the (bunkbed) network, let I(x) denote the current
leaving at x, and I(x, y) = I(y) − I(x).

It is sufficient to show that for any vertex u ∈ G, V (u0) ≤ V (u1). From this
it will follow that

I(x0, y0)−I(x0, y1) =
∑

u∈N(y)

V (y0) − V (u0) − (V (y1) − V (u1))

Ruv
=

∑

u∈N(y)

V (u1) − V (u0)

Ruv
≥ 0.

Let γ(u) = V (u1)−V (u0) for u ∈ V (G). This gives an electrical potential γ
defined on G (rather than B(G)), and our task is to show that γ is a nonnegative
function.

By Kirchoff’s law, for any vertex u /∈ {x0, y0, y1}, we have I(u) = 0, and

hence V (u) =
(

∑

v∈N(u)
1

Ruv

)−1
∑

v∈N(u)
V (v)
Ruv

. Hence the electric potential of

u is a mean value of the electric potentials at the neighbouring vertices of u (in
the sense that minv∈N(u) V (v) ≤ V (u) ≤ maxv∈N(u) V (v) holds). By a standard
argument, we deduce the maximum principle; min{ boundary values} ≤ V (u) ≤
max{ boundary values} for each vertex u. By applying the maximum principle
to V in the bunkbed graph we obtain V (x1) ≥ 0, since all boundary values are
nonnegative (indeed, they are 0 and 1).

Now γ has the boundary value γ(y) = 0. Note that we may also assume
γ(y) = V (x1) to be fixed (supplying part of the solution V with the original
boundary values as a new boundary value can not change the new solution V ).

By applying the maximum principle to γ in G, we obtain γ(u) ≥ 0 for every
vertex u.

Note that T separating x and y in G is the same thing as saying that the
component of y in G−T is joined to a grounded boundary. Hence γ = 0 in this
component, meaning that I(y0) = I(y1) in this case. This statement should be
compared with the case of equality in the (original) bunkbed conjecture.

Electrical networks and probability

In [2] it is proved that R(x0, y0) ≤ R(x0, y1) for any bunkbed graph, where
R(s, t) is the effective resistance between s and t in the network. The effective
resistance could be defined by solving 1 = R(s, t) · I, where I is the strength of
the electrical current flowing from s to t when fixing the potential of s and t to 1
and 0 respectively. This result can be interpreted in terms of random walks on
the bunkbed; a random walk starting at x0 in each step moving to a neighbour
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chosen uniformly at random is more likely to reach y0 before it reaches y1 than
to reach y1 before y0.

Two resistors of strengths R1, R2 connected in series have a combined resis-
tance Rser = R1 +R2. When connecting two resistors in parallel, the combined
resistance is Rpar = R1+R2

R1R2
= Rser

R1R2
. The corresponding values for random

graphs are pser = p1p2 and ppar = p1 + p2 − p1p2 = p1 + p2 − pser.
Now we have an interesting symmetry:

ln pser = ln p1 + ln p2 Rser = R1 + R2

ppar = p1 + p2 − pser lnRpar = lnRser − lnR1 − lnR2
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Chapter 5

Related topics

5.1 Potentials and random graphs

In the previous section, we saw that the introduction of a potential simplified the
calculation of the analogue of reachability probabilities. Hence one would like
to have a similar notion in a random graph. This can be achieved as follows.
Let x0 denote some distinguished vertex in G. Associate each edge e with a

random variable Ue taking values in [0, 1]. Let pe =
∫ 1

0
P (Ue < q)dq. Assume

(Ue)e∈E to be independent, though not necessarily identically distributed.
In the other direction, given pe for each edge e of B(G), there are many

choices of (Ue). Actually, allowing Ue0
and Ue1

to be dependent gives another
interesting model, since the BBC is trivial in the case where Ue0

are Ue1
equal.

The sought-for potential is ν(z) := E(inf{q : the edges with Ue < q connect x0 and z}).
We recover the original percolation model by choosing a q ∈ [0, 1] randomly

and uniformly, declaring an edge e to be open if (and only if) Ue < q, and the
bunkbed conjecture amounts to the statement ν(y0) ≤ ν(y1).

The potential ν does not, however, satisfy any relations analogous to the
electrical potential V in the previous section.

5.2 The random cluster model

Definition 5.1. The random cluster measure P , with parameter q, on a graph
G where each edge e is labeled by some real number pe ∈ [0, 1] is defined by

P (ω) ∝ qc(ω)
∏

e:ωe=1

pe

∏

e:ωe=0

(1 − pe),

for subgraphs ω of G. Here c(ω) is the number of connected components in ω,
and, as before, ωe is the indicator variable of the edge e ∈ E(G) being included
in E(ω).

For q = 1, the random cluster measure is just the random graph measure
defined earlier. When q 6= 1, edges will not be open independently of each other.

For q = 2, the corresponding bunkbed conjecture is true, shown in [8]. This
result uses to the strong connection between the well studied Ising model from
statistical physics and the random cluster model with q = 2.

Aas, 2010. 39
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Figure 5.1: A random graph

x

0.5 0.7 0.7

Figure 5.2: Replacing each edge with two identical edges in parallel in this graph
changes the x-order.

It is interesting to note that when all edge labels pe equal the same number
p, the limit as q → 0 and q/p → 0 of the random cluster measure is the uniform
measure on all spanning trees of G, assuming G is connected (see [5]).

5.3 Ordering V (G)

To prove BBC, one could try to reduce counterexamples to more ’extreme’
counterexamples. For example, reducing to counterexamples where all edge
labels are small would at the least give a proof of BBC for graphs in which
there is a x0y0-path whose probability of being open is strictly greater than
that of any x0y1-path.

Let G be a percolation graph with some distinguished vertex x, called the
’root’. Generically (varying p ∈ [0, 1]|E|), the vertices y are totally ordered by
the rank function P (x ↔ y) (for definiteness, let y ≤x z ⇔ P (x ↔ y) ≥ P (x ↔
z)). A total order on the vertices of G may be identified with a permutation
σ ∈ S|V (G)|, which we refer to as the percolation order from x in G, or just
x-order.

An interesting question is how the x-order of a graph changes when changing
p. Note that the relation ’p and p′ give the same x-order’ partitions almost all
of [0, 1]|E| into components Cσ.

Some natural questions are

• If Cσ 6= ∅, does the closure C̄σ include 0?

• Is Cσ connected as a subset of R
|E(G)|?

0.7 0.7

0.70.7

0.7 x

Figure 5.3: Replacing each edge with two identical edges in series in this graph
changes the x-order.
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• What properties does the set RG := {σ : Cσ 6= ∅} have?

• Substitute each edge e of G with two parallel (independent) copies of e.
Does the percolation order (from any vertex) change?

• Substitute each edge e of G with two (independent) copies of e in series.
Does the percolation order change?

A positive answer to the first two questions would make a corresponding
statement for bunkbed graphs (that is, varying the probabilties in G but order-
ing the vertices in all of B(G)) reasonable to hold as well. This would enable
us to transfer any counterexample to the bunkbed conjecture to another coun-
terexample with all edge labels being less than some arbitrarily small chosen
constant.

The answers to the last two questions are both ’in general, yes’; counterex-
amples are given in Figures 5.3 and 5.3.

An example

If we vary the labels p1 of all edges different from {2, 5} and the label p2 of
the edge {2, 5} in the graph in Figure 5.3, only two x-orders arise for x = 0:
(0215346) and (0213546).
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ditional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer
to its WWW home page: http://www.ep.liu.se/

Upphovsrätt

Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare
- under 25 år fr̊an publiceringsdatum under förutsättning att inga extraordi-
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egenart. För ytterligare information om Linköping University Electronic Press
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