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The iterative scaling procedure (or iterative proportional fitting procedure) was first
suggested in 1940 by Deming and Stephan [4]. It consists in modifying a non-negative
matrix to achieve specified row and column sums by alternately multiplying the rows
and columns to adjust their sums to the desired values. Since 1940 the procedure has
been the subject of numerous papers both by statisticians and pure mathematicians.
Fienberg [6] contains an admirable review of the papers up to 1970.

Sinkhorn [11] first stressed the idea of diagonal equivalence in 1964 and it is clear
that by the nature of the process the iterates are diagonally equivalent to the original
matrix. That is also true for the limit if no non-zero cell of the initial matrix tends to zero
(an easy proof of this is included in the present paper for completeness). Suppose that
all the desired sums are 1. In that case the limit matrix is doubly stochastic, and the
structure of all doubly stochastic matrices is known (Birkhoff [1]). Thus it is possible to
determine which cells have to be zero in the limit. Sinkhorn and Knopp [14] give
necessary and sufficient conditions for convergence in the doubly stochastic case and
show further that only those cells converge to zero that have to do so. That paper forms
the starting point for the present one. In 1972 Sinkhorn [12] proved that in the same
case one could set all cells that tended to zero equal to zero at the start without
changing the limit. The corresponding theorem, proved differently, plays an important
role in this paper.

After the paper by Sinkhorn and Knopp the attention of pure mathematicians
shifted away from the ISP itself and towards the concept of diagonal equivalence. In
1968 Brualdi [2] gave necessary and sufficient conditions for the existence of a matrix
with a given pattern of non-zero cells and given row and column sums. There are
several papers, of greater or lesser generality, that use these conditions to show that if
the initial matrix A has a suitable pattern, then there exists a unique matrix diagonally
equivalent to A with the desired row and column sums (see [3], [5], [7], [8], [9] and
[13]). These proofs are essentially topological in nature, using fixed point or optimum
theorems. The norms they introduce are closely related to the auxiliary functions
defined in Sinkhorn and Knopp and in this paper.

We prove here that a necessary and sufficient condition for the convergence of the
ISP is that there exists a matrix with the given totals and zeros at least everywhere that
the initial matrix has zeros. Such a matrix is used explicitly in the proof, rather than
Brualdi's conditions. In the course of the proof we also show that the minimum possible
number of cells tend to zero, and that if these cells are set to zero initially, then the
process will converge to the same limit, which will then be diagonally equivalent to the
new initial matrix. These results constitute Theorem 1. In a second section they are
extended to the case when certain column sums are left unspecified (Theorem 2).
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comments.
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All matrices in this paper are understood to be real and non-negative.
Two concepts are required continually in what follows, so we repeat their

definitions and elementary properties here.
Two matrices, A and B, are said to be diagonally equivalent if there exist invertible

diagonal matrices X and Y such that B = XAY. The diagonal elements of X are
labelled x,- and called row multipliers, those of Y are labelled y} and called column
multipliers.

The pattern of a matrix A is a bipartite graph with a node for each row and each
column and an edge connecting row node i to column node; whenever atj ^ 0. A
matrix B is said, by abuse of language, to have a partial pattern of A if its pattern is a
partial graph of the pattern of A (same nodes, subset of the edges). This is equivalent to
au = 0 => btj = 0. Diagonally equivalent matrices obviously have the same pattern.
The matrix A is called connected if its pattern is a connected graph. Any matrix is the
direct sum of its connected components. In a graph two nodes are called neighbours if
there is an edge connecting them. By abuse of language we extend this terminology to
rows and columns (and even row multipliers and column multipliers).

We now state Theorem 1 formally.

THEOREM 1. Let a matrix A and desired row and column sums rh Cj ^ 0 be given. A
necessary and sufficient condition for the ISP to converge to a matrix Q with these sums is
the existence of a matrix B with partial pattern of A and the desired sums. Furthermore the
pattern ofQ is the maximal partial pattern of A for which such a matrix B exists. If A' is the
matrix derived from A by setting cells outside that pattern to zero, then A' is diagonally
equivalent to Q and the ISP starting with A' converges to Q.

Our first proposition, the proof of which is a straightforward generalization of one
in Sinkhorn [11] for the case of positive matrices, will be used to establish the
uniqueness of the limit matrices in the ISP.

PROPOSITION 1. If A and B are diagonally equivalent and have the same row and
column sums, then A = B.

Proof. We may assume that A and B are not 0 and, since they have the same
pattern, we may prove the proposition for each of their components. So we assume that
A is connected and that B = XA Y; we designate the sums by rt and c, and may also
assume that none of these is zero. Then

ri = Z bu = xi Z aijyj < x.-r^max yj).
j j

So x,- ^ (max y)'1 and equality occurs only if y} is maximal for all neighbours of x,-.
Similarly we obtain y} ^ (minx,)"1 with an analogous condition for equality. It
follows that min x,- = (max y,)"1. Now let xx = min x;, say; then y,- = max y} for all
neighbours of x l 5 hence x, = minx, for all neighbours of these y,- etc. From the
connectedness of A it follows inductively that all x, = min xt and all y} = max y,- and
hence that B = A.

Before we start the proof of Theorem 1 itself we state a lemma on positive real
numbers.
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LEMMA 1. Let ax,..., at be positive real numbers and for xx,..., xr variable positive
real numbers define

Then for t-tuples {xt) such that £ x,- = £ ait we havefix^..., xt) ^ 1 andf -> 1 if
i i

and only if xx -> a{for each i.

This lemma can be proved using the convexity of the log function, or by Lagrange's
method, or it can be derived from the generalized geometric-algebraic mean inequality.

The proof of Theorem 1 is broken into a series of propositions. We let the sequence
of matrices generated by the ISP be A(m), where A{2"\ (n > 0), has column sums cjn

and the desired row sums, while A{2n +1) has row sums rin and the desired column sums.
Further A(2n) = XnAYn and A{2n + 1) = XnAYn + l . Since the sequence is bounded it
must have limit matrices (of subsequences).

PROPOSITION 2. If a matrix B as in Theorem 1 exists, then all limit matrices of the
ISP have the desired row and column sums.

Proof. We consider the functions

and

By the construction of the multipliers we have

gJL = I ] (yjn+i/yjJ' = U (Cj/cjn)
Ci •

j j

For n > 0, J] cjn = £ c,-, so it follows from Lemma 1 that gn $s /„ and that gjfn -+ 1 if
j j

and only if cjn -> c, for al l ; . The analogous argument holds for/n + 1/gfn. Hence the
conclusion will be reached if we can show that the sequence /„ is bounded above.

Now xinyjn = a^f/atj for ai} # 0, and so this product is bounded above, because
the elements a(^° are bounded by r{ (if n > 0). A possible bound is thus
L = (max ^/(min a0), where the minimum is taken over the non-zero elements of A.

At this point we exploit the existence of B. Note that the row and column sums of B
are r, and c, respectively. Thus

Furthermore, if b^ j= 0, then atj =£ 0, and hence xinyjn ^ L. So /„ ^ Ll, where
d = £ by and /„ is bounded as desired.

U

PROPOSITION 3. Under the same hypothesis, the pattern of any limit matrix is
intermediate between those of B and A.
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Proof. With L as in Proposition 2, {xinyjnp£d-biJ> ^ /„ ^ / x . So if fcy ^ 0, then
x,n)>;n is bounded away from 0. A similar argument holds for xinyjn+l. Thus ajj° is also
bounded away from 0 for all m. This proves the proposition.

Note that since the choice of B is free within the constraints it follows that all limit
matrices must have the same pattern, which must be the maximum possible. Let A' be
derived from A by setting all elements outside this pattern equal to zero, and leaving the
others unchanged.

PROPOSITION 4. Under the same hypothesis, any limit matrix of the ISP applied to A
is diagonally equivalent to A'.

Proof Let G be the limit of the sequence X'n A Y'n (where the ' signifies that this is
some subsequence of the ISP sequence). Then G is also the limit of the sequence
X'nA'Y'n. So the proposition follows directly from the following lemma, which is a
generalization of one proved by Sinkhorn and Knopp [14] for the special case that G is
doubly stochastic.

LEMMA 2. Let G = lim X'kHY'k where the matrices X'k and Y'k are positive diagonal
matrices. If G has the same pattern as H, then they are diagonally equivalent.

Proof. We assume without loss of generality that H is connected. By the
hypothesis limk (x'iky'jk) exists and is non-zero whenever htj =£ 0. Let xik = x'ik/x'lk and
yjk = y*x'lk for all i and; . Then xikyjk = x'iky'jk; so XkHYk = X'kHY'k.

Now xl k = 1 for all k so limkxlk = 1 exists. Suppose that it has been proved, for
some neighbour xik ofyjk, that limkxik = x; exists and is non-zero. Then it follows that
yj = limkyjk = limk(xjky}k)/limkx,k exists and is also non-zero. Of course the same
argument allows us to proceed from a column multiplier to a neighbouring row
multiplier. Since H is connected, it follows that all sequences (xik) and {yjk) converge,
and the desired conclusion follows.

It is clear that these propositions and the remark that A" = A' establish Theorem 1
completely. We now turn to the case in which some of the column totals are left
unspecified. It is easy to see that we can add these columns together to form a single
column and separate them at any desired stage of the process. We therefore assume that
only one column total is unspecified, namely c t . Now the sum of the column totals must
equal the sum of the row totals in any matrix and from this fact we can calculate the
only value of cl for which the problem is feasible. We can then insert this total and apply
the standard ISP and Theorem 1. However, we would also like to establish what
happens if we apply a modified ISP in which all column multipliers y ln are set to one.
We will prove the following theorem.

THEOREM 2. A necessary and sufficient condition for the convergence of the modified
ISP (MISP) is the existence of a matrix B of partial pattern of the initial matrix satisfying
the marginal conditions. In that case the limit of MISP is the same as that of ISP.

To establish Theorem 2 we follow the pattern of the proof of Theorem 1. It is clear
that once we have established the equivalents of Propositions 2 and 3, Proposition 4
and the main part of the theorem will follow as before, since the marginal totals do not
enter into that part of the proof. Proposition 1 then establishes the last part of the
theorem.
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Before starting the proof we note that the elements of the first column of A{2n +1) are
now bounded by the row totals, while all other elements are bounded exactly as before.
(We are using the same notation as in Theorem 1, but it is now understood to apply to
the MISP.)

PROPOSITION 5. Under the hypothesis of Theorem 2, any limit matrix of the modified
procedure satisfies the marginal conditions.

Proof. We define /„ and gn as in Proposition 2. However, it is no longer necessarily

true that gn >/„, since gjfn = \[ {cjcjnf, and £ cjn = £ c, need not hold. Thus

Lemma 2 cannot be applied, but it does give a lower bound for gjfn:

\j > 2 I j > 2

and this lower bound is approached only if the ratios Cj/cjn (j ^ 2) all approach the
same value.

Again, since £ r,n = c l n + J] c,-, it is not necessarily true that/n + 1 ^ gn, and we

have the lower bound

Jn+l/9n '-

with an analogous condition for the bound to be approached.
However it is true that/n + 1 ^ / n .For i fwepu tc l n = a,cv = a + u, £ cs = b,then

Y,?i = a + b + u, Y,rtn = a + ° a n d X cjn = b + u. The statement then follows from

the following lemma.

LEMMA 3. If a and b are positive numbers and u > —b, then

V * + b J

and it approaches 1 only as u approaches 0.

The lemma can easily be proved by differentiation.

Now if/n + 1//n -• 1, it follows that u -• 0, so that the lower bounds for gjfn and
fn+i/9n approach 1. But then gjfn and fn+1/gn must approach their lower bounds
and so the ratios Cj/cjn (j ^ 2) and rjrin must approach constants (in terms of i and;).
But since cln -> 1, these constants must be 1.

To complete the proof of the proposition it therefore remains to establish an upper
bound for/n. But this can be done precisely as in Proposition 2.

Remark. This argument cannot be applied to gn+l/gn, as there is no similar direct
link between the errors of Y fin and V c,n + 1.
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PROPOSITION 6. Under the hypothesis of Theorem 2 any limit matrix of the modified
procedure has a pattern intermediate between that of B and that of A.

Proof. For limits of the sequence (y4(2fl)) this can be established just as in
Proposition 3. For the odd matrices a little extra work is required. We note that we
have established that \imn{Cj/cjn) = 1 for all;. But remarking that Cj/cjn = fljj" + 1)/ajjn)

for all; ^ 2, it follows that if a sequence of elements a}jn + 1) converges to 0, the same
must be true for the corresponding sequence a(tn) and vice versa. Hence the patterns of
limit matrices of (A(2n + 1)) are the same as those of limit matrices of (A(2n)). This
concludes the proof of the proposition.

Since the proofs of Propositions 1 and 4 remain valid (as we have already
remarked), this establishes Theorem 2. We mention that numerical examples suggest
that the convergence of MISP is significantly slower than that of the original ISP, and
they also suggest that convergence still occurs when certain row and column sums are
simultaneously left unspecified. However the error analysis in Proposition 5 is too
crude to establish the behaviour of /„ or gn in that case.
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