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Abstract

We prove a conjecture on double Eulerian polynomials due to Visontai
[5], relating the number of descents and the number of inverse descents of
permutations to the number of occupied rows and number of ascents of
inversion tables.

Introduction

The double Eulerian polynomial An(t, s) enumerates the number of de-
scents and the number of inverse descents of a permutation,

An(t, s) =
X

π∈Sn

tdesπsdesπ
−1

.

It is a natural generalization of the classical Eulerian polynomial An(t, 1).
One interesting property of the classical Eulerian polynomial is its uni-
modality, which is an easy consequence of being nonnegative in the basis
{ti(1 + t)n−i}n

i=0. One way of proving this is to note that An(t, 1) is the
h-polynomial of the Coxeter complex (see for instance [1]). Foata and
Strehl gave a bijective proof involving ’valley-hopping’ - see [3] for a nice
exposition. Gessel [2] conjectured that An(t, s) similarly has nonnegative
coefficients when expressed in the basis Bij = (ts)i(t + s)j(1 + ts)n−2i−j .
This conjecture has motivated some of the work on An(t, s), including
this.

For any n ≥ 0, we denote the set of permutations of [n] = {1, . . . , n}
(the n-permutations) by Sn. We think of permutations as words. For ex-
ample, the permutation mapping 1 7→ 3, 2 7→ 1, 3 7→ 4, 4 7→ 2 is identified
with the word 3142. An (n-)inversion table is a sequence e1, . . . , en of
integers satisfying 0 ≤ ei ≤ i− 1 for each i. The set of n-inversion tables
is denoted In. We now define some statistics.

• DES(π) = {i : π(i) > π(i + 1)}
• IDES(π) = {i : π−1(i) > π−1(i + 1)}
• ASC(e) = {i : ei < ei+1} (note the strict inequality).

• ROW(e) = {ei : 1 ≤ i ≤ n}\{0}.

Moreover, des = #DES, ides = #IDES, asc = #ASC, row = #ROW.
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Examples

For example, the inversion tables of length 5 (written as words e1e2e3e4e5)
with 1 ascent and two occupied rows are 00221, 00211, 00210, 00021, 00032, 00031.
The permutations of length 5 with 1 descent and two inverse descents are
24135, 13524, 23514, 25134, 35124, 24513.

We have DES(24135) = {2}, IDES(24135) = {1, 3}, ASC(00210) = {2},
ROW(00210) = {1, 2}.

Given a standard Young tableau P , let desP = {i : i is in a strictly
higher row than i+1}. Well-known properties for the RSK correspondence
give that An(t, s) =

P
λ〈n fλ(t)fλ(s), where fλ(x) =

P
Phasshapeλ xdes(P ).

For the n = 5, the polynomials fλ are, in no particular order, 1, 2x +
3x2, 4x, 2x3 + 3x2, 4x3, x4, 3x2 + 3x. These polynomials are easy to com-
pute and using them we get A5(t, s).

The identity

Visontai [5] conjectured thatX
π∈Sn

tdesπsidesπ =
X
e∈In

tascesrowe.

In fact we will prove the following refined identity (which reduces to
the conjecture by letting t1 = · · · = tn = t). For a subset S ⊆ [n], let
tS =

Q
i∈S ti, a monomial in the indeterminates t1, . . . , tn.

Theorem 1. We haveX
π∈Sn

tDESπsidesπ =
X
e∈In

tASCesrowe.

The following lemma is an immediate consequence of Möbius inversion
(see [4]).

Lemma 1. Suppose α, β are functions mapping subsets of [n] to polyno-
mials. Then α = β if and only if for every S ⊆ [n] we haveX

T⊇S

α(T ) =
X
T⊇S

β(T ).

We turn to the proof of Theorem 1. Fix a subset S ⊆ [n]. We will
prove that

P
π∈Sn:DES(π)⊇S vides(π) =

P
e∈In:ASC(e)⊇S vrow(e).

We now construct two (rather large) rooted labelled trees.
The first tree T1 has as node set all permutations π (of any length)

such that if π is an r-permutation then DES(π) ⊇ S ∩ [r].
Suppose r < s, and that π′ is an s-permutation. Denote by π′(r)

the r-permutation obtained by relabeling the first r values of π′ by [r],
retaining the relative ordering of these values. There is an edge from π to
π′ if {r, r + 1, . . . , s} ∩ S = {r + 1, . . . , s− 1}. All edges are given in this
way. The node π ∈ Sn in T1 is labelled by the pair (ides(π), n)

The other tree T2 has as node set all inversion tables e (of any length)
such that if e is an r-inversion table then ASC(e) ⊇ S ∩ [r].
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Suppose r < s, e is an r-inversion table, e′ is an s-inversion table.
There is an edge from e to e′ if the restriction of e′ (considered as a function
from [r] to Z≥0) to [r]. The node e ∈ In in T2 is labelled (row(e), n).

By the lemma it suffices to prove that T1 and T2 are isomorphic as
rooted labelled trees. We prove this by constructing a bijection Φ from T1

to T2 inductively. Although we do not construct Φ completely explicitly,
this can be done, though we have not found a particularly nice choice.

We let Φ map the root of T1 (the empty permutation) to the root of
T2 (the empty inversion table). Now suppose π is an r-permutation and
that e = Φ(π) has been defined, where e is an r-inversion sequence.

Let F (π, s, p) be the set of children π′ of π such that π′ has length s
and ides(π′) = ides(π)+ p. Similarly, let G(e, s, p) be the set of children
e′ of e such that e′ has length s and row(e′) = row(e) + p.

To prove that Φ can be extended to the children of π it suffices to prove
that |F (π, s, p)| = |G(e, s, p)|. This will finish the proof of the theorem.

It is easy to see that elements π′ of F (π, s, p) correspond in a natural
way to nonnegative integer (s + 1)-tuples (x1, . . . , xs+1) with sum r such
that

Pt+1
i=1 xi +

Ps+1
i=t+2(xi − 1)+ = p; xi represents the number of letters

in π′ less than the i’th largest and the (i + 1)’st largest among the first r
letters in π′.

Similarly elements e′ of G(e, s, p) can naturally be represented by r-
subsets S of [r + s] with |S ∩ {1, . . . , t + 1}| = p; S represents the values
of e′ on [s]\[r] (which are distinct by the construction of T2).

From these remarks one easily finds |F (π, s, t, p)| =
Pp

a=0

`
t+1
r−p

´`
r−a−1

a

´`
a+s−t−1

a

´
.

Similarly, |G(e, s, t, p)| =
`

t+1
r−p

´`
r+s−t−1

p

´
. Verifying that these sums are

in fact equal is routine.
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